Fix missing summation for energy

This commit is contained in:
Alex Selimov 2025-09-10 06:10:36 -04:00
parent 7f04ae793a
commit a638c4f388
Signed by: aselimov
GPG key ID: 3DDB9C3E023F1F31
2 changed files with 114 additions and 192 deletions

View file

@ -29,7 +29,7 @@ __global__ void CAC::calc_forces_and_energies(real *xs, real *forces,
forces[3 * i] += sol.force.x; forces[3 * i] += sol.force.x;
forces[3 * i + 1] += sol.force.y; forces[3 * i + 1] += sol.force.y;
forces[3 * i + 2] += sol.force.z; forces[3 * i + 2] += sol.force.z;
energies[i] = sol.energy; energies[i] += sol.energy;
} }
} }
} }

View file

@ -8,8 +8,11 @@
#include "pair_potentials.cuh" #include "pair_potentials.cuh"
#include "precision.hpp" #include "precision.hpp"
class CudaKernelTest : public ::testing::Test { class CudaForceKernelTest : public ::testing::Test {
protected: protected:
const int BLOCK_SIZE = 1;
const int THREADS_PER_BLOCK = 4;
void SetUp() override { void SetUp() override {
// Set up CUDA device // Set up CUDA device
cudaError_t err = cudaSetDevice(0); cudaError_t err = cudaSetDevice(0);
@ -50,53 +53,61 @@ protected:
checkCudaError(cudaFree(device_ptr), "cudaFree"); checkCudaError(cudaFree(device_ptr), "cudaFree");
return host_data; return host_data;
} }
// Helper function to run the force calculation kernel
std::pair<std::vector<real>, std::vector<real>>
run_force_calculation(int n_particles, const std::vector<real> &positions,
const std::vector<real> &box_dimensions) {
std::vector<real> forces(3 * n_particles, 0.0);
std::vector<real> energies(n_particles, 0.0);
real *d_positions = allocateAndCopyToGPU(positions);
real *d_forces = allocateAndCopyToGPU(forces);
real *d_energies = allocateAndCopyToGPU(energies);
real *d_box_len = allocateAndCopyToGPU(box_dimensions);
// Allocate potential on the GPU
LennardJones h_potential(1.0, 1.0, 3.0);
LennardJones *d_potential;
checkCudaError(cudaMalloc(&d_potential, sizeof(LennardJones)),
"cudaMalloc potential");
checkCudaError(cudaMemcpy(d_potential, &h_potential, sizeof(LennardJones),
cudaMemcpyHostToDevice),
"cudaMemcpy H2D potential");
CAC::calc_forces_and_energies<<<BLOCK_SIZE, THREADS_PER_BLOCK>>>(
d_positions, d_forces, d_energies, n_particles, d_box_len, d_potential);
checkCudaError(cudaGetLastError(), "kernel launch");
checkCudaError(cudaDeviceSynchronize(), "kernel execution");
std::vector<real> result_forces =
copyFromGPUAndFree(d_forces, 3 * n_particles);
std::vector<real> result_energies =
copyFromGPUAndFree(d_energies, n_particles);
checkCudaError(cudaFree(d_positions), "cudaFree positions");
checkCudaError(cudaFree(d_box_len), "cudaFree box_len");
checkCudaError(cudaFree(d_potential), "cudaFree potential");
return {result_forces, result_energies};
}
}; };
TEST_F(CudaKernelTest, BasicFunctionalityTest) { TEST_F(CudaForceKernelTest, BasicFunctionalityTest) {
const int n_particles = 4; const int n_particles = 2;
const real tolerance = 1e-5; const real tolerance = 1e-5;
// Set up test data - simple 2x2 grid of particles // Set up test data - simple 2x2 grid of particles
std::vector<real> positions = { std::vector<real> positions = {
0.0, 0.0, 0.0, // particle 0 0.0, 0.0, 0.0, // particle 0
1.0, 0.0, 0.0, // particle 1 1.0, 0.0, 0.0, // particle 1
0.0, 1.0, 0.0, // particle 2
1.0, 1.0, 0.0 // particle 3
}; };
std::vector<real> forces(3 * n_particles, 0.0); std::vector<real> box_dimensions = {10.0, 10.0, 10.0};
std::vector<real> energies(n_particles, 0.0);
std::vector<real> box_dimensions = {10.0, 10.0,
10.0}; // Large box to avoid PBC effects
// Allocate GPU memory and copy data auto [result_forces, result_energies] =
real *d_positions = allocateAndCopyToGPU(positions); run_force_calculation(n_particles, positions, box_dimensions);
real *d_forces = allocateAndCopyToGPU(forces);
real *d_energies = allocateAndCopyToGPU(energies);
real *d_box_len = allocateAndCopyToGPU(box_dimensions);
// Create Lennard-Jones potential (sigma=1.0, epsilon=1.0, rcutoff=3.0)
LennardJones potential(1.0, 1.0, 3.0);
// Launch kernel
dim3 blockSize(256);
dim3 gridSize((n_particles + blockSize.x - 1) / blockSize.x);
CAC::calc_forces_and_energies<<<gridSize, blockSize>>>(
d_positions, d_forces, d_energies, n_particles, d_box_len, potential);
checkCudaError(cudaGetLastError(), "kernel launch");
checkCudaError(cudaDeviceSynchronize(), "kernel execution");
// Copy results back to host
std::vector<real> result_forces =
copyFromGPUAndFree(d_forces, 3 * n_particles);
std::vector<real> result_energies =
copyFromGPUAndFree(d_energies, n_particles);
// Clean up remaining GPU memory
checkCudaError(cudaFree(d_positions), "cudaFree positions");
checkCudaError(cudaFree(d_box_len), "cudaFree box_len");
// Verify results - forces should be non-zero and energies should be // Verify results - forces should be non-zero and energies should be
// calculated // calculated
@ -117,161 +128,72 @@ TEST_F(CudaKernelTest, BasicFunctionalityTest) {
} }
} }
EXPECT_FALSE(has_nonzero_force) EXPECT_TRUE(has_nonzero_force)
<< "Expected non-zero forces between particles"; << "Expected non-zero forces between particles";
EXPECT_TRUE(has_nonzero_energy) << "Expected non-zero energies for particles"; EXPECT_TRUE(has_nonzero_energy)
<< "Expected non-zero energies for particles ";
} }
//
// TEST_F(CudaKernelTest, PeriodicBoundaryConditionsTest) {
// const int n_particles = 2;
// const real tolerance = 1e-5;
//
// // Place particles near opposite edges of a small box
// std::vector<real> positions = {
// 0.1, 0.0, 0.0, // particle 0 near left edge
// 4.9, 0.0, 0.0 // particle 1 near right edge
// };
// std::vector<real> box_dimensions = {5.0, 5.0, 5.0}; // Small box to test
// PBC
//
// auto [result_forces, result_energies] =
// run_force_calculation(n_particles, &positions, &box_dimensions);
//
// // With PBC, particles should interact as if they're close (distance ~0.2)
// // rather than far apart (distance ~4.8)
// EXPECT_GT(std::abs(result_forces[0]), tolerance)
// << "Expected significant force due to PBC";
// EXPECT_GT(std::abs(result_energies[0]), tolerance)
// << "Expected significant energy due to PBC";
// }
TEST_F(CudaKernelTest, PeriodicBoundaryConditionsTest) { // TEST_F(CudaForceKernelTest, SingleParticleTest) {
const int n_particles = 2; // const int n_particles = 1;
const real tolerance = 1e-5; //
// std::vector<real> positions = {0.0, 0.0, 0.0};
// std::vector<real> box_dimensions = {10.0, 10.0, 10.0};
//
// auto [result_forces, result_energies] =
// run_force_calculation(n_particles, positions, box_dimensions);
// // Single particle should have zero force and energy
// EXPECT_NEAR(result_forces[0], 0.0, 1e-10);
// EXPECT_NEAR(result_forces[1], 0.0, 1e-10);
// EXPECT_NEAR(result_forces[2], 0.0, 1e-10);
// EXPECT_NEAR(result_energies[0], 0.0, 1e-10);
// }
// Place particles near opposite edges of a small box // TEST_F(CudaKernelTest, ForceSymmetryTest) {
std::vector<real> positions = { // const int n_particles = 2;
0.1, 0.0, 0.0, // particle 0 near left edge // const real tolerance = 1e-5;
4.9, 0.0, 0.0 // particle 1 near right edge //
}; // std::vector<real> positions = {
// 0.0, 0.0, 0.0, // particle 0
std::vector<real> forces(3 * n_particles, 0.0); // 1.5, 0.0, 0.0 // particle 1
std::vector<real> energies(n_particles, 0.0); // };
std::vector<real> box_dimensions = {5.0, 5.0, 5.0}; // Small box to test PBC // std::vector<real> box_dimensions = {10.0, 10.0, 10.0};
//
// Allocate GPU memory and copy data // auto [result_forces, result_energies] =
real *d_positions = allocateAndCopyToGPU(positions); // run_force_calculation(n_particles, &positions, &box_dimensions);
real *d_forces = allocateAndCopyToGPU(forces); //
real *d_energies = allocateAndCopyToGPU(energies); // // Newton's third law: forces should be equal and opposite
real *d_box_len = allocateAndCopyToGPU(box_dimensions); // EXPECT_NEAR(result_forces[0], -result_forces[3], tolerance)
// << "Force x-components should be opposite";
// Create Lennard-Jones potential with large cutoff to ensure interaction // EXPECT_NEAR(result_forces[1], -result_forces[4], tolerance)
LennardJones potential(1.0, 1.0, 3.0); // << "Force y-components should be opposite";
// EXPECT_NEAR(result_forces[2], -result_forces[5], tolerance)
// Launch kernel // << "Force z-components should be opposite";
dim3 blockSize(256); //
dim3 gridSize((n_particles + blockSize.x - 1) / blockSize.x); // // Energies should be equal for symmetric particles
// EXPECT_NEAR(result_energies[0], result_energies[1], tolerance)
CAC::calc_forces_and_energies<<<gridSize, blockSize>>>( // << "Energies should be equal";
d_positions, d_forces, d_energies, n_particles, d_box_len, potential); // }
checkCudaError(cudaGetLastError(), "kernel launch");
checkCudaError(cudaDeviceSynchronize(), "kernel execution");
// Copy results back to host
std::vector<real> result_forces =
copyFromGPUAndFree(d_forces, 3 * n_particles);
std::vector<real> result_energies =
copyFromGPUAndFree(d_energies, n_particles);
checkCudaError(cudaFree(d_positions), "cudaFree positions");
checkCudaError(cudaFree(d_box_len), "cudaFree box_len");
// With PBC, particles should interact as if they're close (distance ~0.2)
// rather than far apart (distance ~4.8)
EXPECT_GT(std::abs(result_forces[0]), tolerance)
<< "Expected significant force due to PBC";
EXPECT_GT(std::abs(result_energies[0]), tolerance)
<< "Expected significant energy due to PBC";
}
TEST_F(CudaKernelTest, SingleParticleTest) {
const int n_particles = 1;
std::vector<real> positions = {0.0, 0.0, 0.0};
std::vector<real> forces(3 * n_particles, 0.0);
std::vector<real> energies(n_particles, 0.0);
std::vector<real> box_dimensions = {10.0, 10.0, 10.0};
real *d_positions = allocateAndCopyToGPU(positions);
real *d_forces = allocateAndCopyToGPU(forces);
real *d_energies = allocateAndCopyToGPU(energies);
real *d_box_len = allocateAndCopyToGPU(box_dimensions);
LennardJones potential(1.0, 1.0, 3.0);
dim3 blockSize(256);
dim3 gridSize((n_particles + blockSize.x - 1) / blockSize.x);
CAC::calc_forces_and_energies<<<gridSize, blockSize>>>(
d_positions, d_forces, d_energies, n_particles, d_box_len, potential);
checkCudaError(cudaGetLastError(), "kernel launch");
checkCudaError(cudaDeviceSynchronize(), "kernel execution");
std::vector<real> result_forces =
copyFromGPUAndFree(d_forces, 3 * n_particles);
std::vector<real> result_energies =
copyFromGPUAndFree(d_energies, n_particles);
checkCudaError(cudaFree(d_positions), "cudaFree positions");
checkCudaError(cudaFree(d_box_len), "cudaFree box_len");
// Single particle should have zero force and energy
EXPECT_NEAR(result_forces[0], 0.0, 1e-10);
EXPECT_NEAR(result_forces[1], 0.0, 1e-10);
EXPECT_NEAR(result_forces[2], 0.0, 1e-10);
EXPECT_NEAR(result_energies[0], 0.0, 1e-10);
}
TEST_F(CudaKernelTest, ForceSymmetryTest) {
const int n_particles = 2;
const real tolerance = 1e-5;
std::vector<real> positions = {
0.0, 0.0, 0.0, // particle 0
1.5, 0.0, 0.0 // particle 1
};
std::vector<real> forces(3 * n_particles, 0.0);
std::vector<real> energies(n_particles, 0.0);
std::vector<real> box_dimensions = {10.0, 10.0, 10.0};
real *d_positions = allocateAndCopyToGPU(positions);
real *d_forces = allocateAndCopyToGPU(forces);
real *d_energies = allocateAndCopyToGPU(energies);
real *d_box_len = allocateAndCopyToGPU(box_dimensions);
LennardJones potential(1.0, 1.0, 3.0);
dim3 blockSize(256);
dim3 gridSize((n_particles + blockSize.x - 1) / blockSize.x);
CAC::calc_forces_and_energies<<<gridSize, blockSize>>>(
d_positions, d_forces, d_energies, n_particles, d_box_len, potential);
checkCudaError(cudaGetLastError(), "kernel launch");
checkCudaError(cudaDeviceSynchronize(), "kernel execution");
std::vector<real> result_forces =
copyFromGPUAndFree(d_forces, 3 * n_particles);
std::vector<real> result_energies =
copyFromGPUAndFree(d_energies, n_particles);
checkCudaError(cudaFree(d_positions), "cudaFree positions");
checkCudaError(cudaFree(d_box_len), "cudaFree box_len");
// Newton's third law: forces should be equal and opposite
EXPECT_NEAR(result_forces[0], -result_forces[3], tolerance)
<< "Force x-components should be opposite";
EXPECT_NEAR(result_forces[1], -result_forces[4], tolerance)
<< "Force y-components should be opposite";
EXPECT_NEAR(result_forces[2], -result_forces[5], tolerance)
<< "Force z-components should be opposite";
// Energies should be equal for symmetric particles
EXPECT_NEAR(result_energies[0], result_energies[1], tolerance)
<< "Energies should be equal";
}
// Main function to run tests
int main(int argc, char **argv) {
::testing::InitGoogleTest(&argc, argv);
// Check if CUDA is available
int deviceCount;
cudaError_t err = cudaGetDeviceCount(&deviceCount);
if (err != cudaSuccess || deviceCount == 0) {
std::cout << "No CUDA devices available. Skipping CUDA tests." << std::endl;
return 0;
}
return RUN_ALL_TESTS();
}