cudaCAC/tests/cuda_unit_tests/test_forces.cu

199 lines
6.8 KiB
Text

#include <cmath>
#include <cuda_runtime.h>
#include <gtest/gtest.h>
#include <vector>
// Include your header files
#include "forces.cuh"
#include "pair_potentials.cuh"
#include "precision.hpp"
class CudaForceKernelTest : public ::testing::Test {
protected:
const int BLOCK_SIZE = 1;
const int THREADS_PER_BLOCK = 4;
void SetUp() override {
// Set up CUDA device
cudaError_t err = cudaSetDevice(0);
ASSERT_EQ(err, cudaSuccess) << "Failed to set CUDA device";
}
void TearDown() override {
// Clean up any remaining GPU memory
cudaDeviceReset();
}
// Helper function to check CUDA errors
void checkCudaError(cudaError_t err, const std::string &operation) {
ASSERT_EQ(err, cudaSuccess)
<< "CUDA error in " << operation << ": " << cudaGetErrorString(err);
}
// Helper function to allocate and copy data to GPU
template <typename T>
T *allocateAndCopyToGPU(const std::vector<T> &host_data) {
T *device_ptr;
size_t size = host_data.size() * sizeof(T);
checkCudaError(cudaMalloc(&device_ptr, size), "cudaMalloc");
checkCudaError(
cudaMemcpy(device_ptr, host_data.data(), size, cudaMemcpyHostToDevice),
"cudaMemcpy H2D");
return device_ptr;
}
// Helper function to copy data from GPU and free GPU memory
template <typename T>
std::vector<T> copyFromGPUAndFree(T *device_ptr, size_t count) {
std::vector<T> host_data(count);
size_t size = count * sizeof(T);
checkCudaError(
cudaMemcpy(host_data.data(), device_ptr, size, cudaMemcpyDeviceToHost),
"cudaMemcpy D2H");
checkCudaError(cudaFree(device_ptr), "cudaFree");
return host_data;
}
// Helper function to run the force calculation kernel
std::pair<std::vector<real>, std::vector<real>>
run_force_calculation(int n_particles, const std::vector<real> &positions,
const std::vector<real> &box_dimensions) {
std::vector<real> forces(3 * n_particles, 0.0);
std::vector<real> energies(n_particles, 0.0);
real *d_positions = allocateAndCopyToGPU(positions);
real *d_forces = allocateAndCopyToGPU(forces);
real *d_energies = allocateAndCopyToGPU(energies);
real *d_box_len = allocateAndCopyToGPU(box_dimensions);
// Allocate potential on the GPU
LennardJones h_potential(1.0, 1.0, 3.0);
LennardJones *d_potential;
checkCudaError(cudaMalloc(&d_potential, sizeof(LennardJones)),
"cudaMalloc potential");
checkCudaError(cudaMemcpy(d_potential, &h_potential, sizeof(LennardJones),
cudaMemcpyHostToDevice),
"cudaMemcpy H2D potential");
CAC::calc_forces_and_energies<<<BLOCK_SIZE, THREADS_PER_BLOCK>>>(
d_positions, d_forces, d_energies, n_particles, d_box_len, d_potential);
checkCudaError(cudaGetLastError(), "kernel launch");
checkCudaError(cudaDeviceSynchronize(), "kernel execution");
std::vector<real> result_forces =
copyFromGPUAndFree(d_forces, 3 * n_particles);
std::vector<real> result_energies =
copyFromGPUAndFree(d_energies, n_particles);
checkCudaError(cudaFree(d_positions), "cudaFree positions");
checkCudaError(cudaFree(d_box_len), "cudaFree box_len");
checkCudaError(cudaFree(d_potential), "cudaFree potential");
return {result_forces, result_energies};
}
};
TEST_F(CudaForceKernelTest, BasicFunctionalityTest) {
const int n_particles = 2;
const real tolerance = 1e-5;
// Set up test data - simple 2x2 grid of particles
std::vector<real> positions = {
0.0, 0.0, 0.0, // particle 0
1.0, 0.0, 0.0, // particle 1
};
std::vector<real> box_dimensions = {10.0, 10.0, 10.0};
auto [result_forces, result_energies] =
run_force_calculation(n_particles, positions, box_dimensions);
// Verify results - forces should be non-zero and energies should be
// calculated
bool has_nonzero_force = false;
bool has_nonzero_energy = false;
for (int i = 0; i < 3 * n_particles; i++) {
if (std::abs(result_forces[i]) > tolerance) {
has_nonzero_force = true;
break;
}
}
for (int i = 0; i < n_particles; i++) {
if (std::abs(result_energies[i]) > tolerance) {
has_nonzero_energy = true;
break;
}
}
EXPECT_TRUE(has_nonzero_force)
<< "Expected non-zero forces between particles";
EXPECT_TRUE(has_nonzero_energy)
<< "Expected non-zero energies for particles ";
}
//
// TEST_F(CudaKernelTest, PeriodicBoundaryConditionsTest) {
// const int n_particles = 2;
// const real tolerance = 1e-5;
//
// // Place particles near opposite edges of a small box
// std::vector<real> positions = {
// 0.1, 0.0, 0.0, // particle 0 near left edge
// 4.9, 0.0, 0.0 // particle 1 near right edge
// };
// std::vector<real> box_dimensions = {5.0, 5.0, 5.0}; // Small box to test
// PBC
//
// auto [result_forces, result_energies] =
// run_force_calculation(n_particles, &positions, &box_dimensions);
//
// // With PBC, particles should interact as if they're close (distance ~0.2)
// // rather than far apart (distance ~4.8)
// EXPECT_GT(std::abs(result_forces[0]), tolerance)
// << "Expected significant force due to PBC";
// EXPECT_GT(std::abs(result_energies[0]), tolerance)
// << "Expected significant energy due to PBC";
// }
// TEST_F(CudaForceKernelTest, SingleParticleTest) {
// const int n_particles = 1;
//
// std::vector<real> positions = {0.0, 0.0, 0.0};
// std::vector<real> box_dimensions = {10.0, 10.0, 10.0};
//
// auto [result_forces, result_energies] =
// run_force_calculation(n_particles, positions, box_dimensions);
// // Single particle should have zero force and energy
// EXPECT_NEAR(result_forces[0], 0.0, 1e-10);
// EXPECT_NEAR(result_forces[1], 0.0, 1e-10);
// EXPECT_NEAR(result_forces[2], 0.0, 1e-10);
// EXPECT_NEAR(result_energies[0], 0.0, 1e-10);
// }
// TEST_F(CudaKernelTest, ForceSymmetryTest) {
// const int n_particles = 2;
// const real tolerance = 1e-5;
//
// std::vector<real> positions = {
// 0.0, 0.0, 0.0, // particle 0
// 1.5, 0.0, 0.0 // particle 1
// };
// std::vector<real> box_dimensions = {10.0, 10.0, 10.0};
//
// auto [result_forces, result_energies] =
// run_force_calculation(n_particles, &positions, &box_dimensions);
//
// // Newton's third law: forces should be equal and opposite
// EXPECT_NEAR(result_forces[0], -result_forces[3], tolerance)
// << "Force x-components should be opposite";
// EXPECT_NEAR(result_forces[1], -result_forces[4], tolerance)
// << "Force y-components should be opposite";
// EXPECT_NEAR(result_forces[2], -result_forces[5], tolerance)
// << "Force z-components should be opposite";
//
// // Energies should be equal for symmetric particles
// EXPECT_NEAR(result_energies[0], result_energies[1], tolerance)
// << "Energies should be equal";
// }