359 lines
13 KiB
Python
359 lines
13 KiB
Python
"""
|
|
This type stub file was generated by pyright.
|
|
"""
|
|
|
|
from collections.abc import Callable, Sequence
|
|
from typing import Any, Literal, NoReturn, SupportsAbs, SupportsIndex, TypeGuard, TypeVar, overload
|
|
from typing_extensions import TypeGuard
|
|
from numpy import _OrderCF, _OrderKACF, bool_, complexfloating, float64, floating, generic, int_, intp, object_, signedinteger, timedelta64, unsignedinteger
|
|
from numpy._typing import ArrayLike, DTypeLike, NDArray, _ArrayLike, _ArrayLikeBool_co, _ArrayLikeComplex_co, _ArrayLikeFloat_co, _ArrayLikeInt_co, _ArrayLikeObject_co, _ArrayLikeTD64_co, _ArrayLikeUInt_co, _ArrayLikeUnknown, _DTypeLike, _ScalarLike_co, _ShapeLike, _SupportsArrayFunc
|
|
|
|
if sys.version_info >= (3, 10):
|
|
...
|
|
else:
|
|
...
|
|
_T = TypeVar("_T")
|
|
_SCT = TypeVar("_SCT", bound=generic)
|
|
_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])
|
|
_CorrelateMode = Literal["valid", "same", "full"]
|
|
__all__: list[str]
|
|
@overload
|
|
def zeros_like(a: _ArrayType, dtype: None = ..., order: _OrderKACF = ..., subok: Literal[True] = ..., shape: None = ...) -> _ArrayType:
|
|
...
|
|
|
|
@overload
|
|
def zeros_like(a: _ArrayLike[_SCT], dtype: None = ..., order: _OrderKACF = ..., subok: bool = ..., shape: None | _ShapeLike = ...) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def zeros_like(a: object, dtype: None = ..., order: _OrderKACF = ..., subok: bool = ..., shape: None | _ShapeLike = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def zeros_like(a: Any, dtype: _DTypeLike[_SCT], order: _OrderKACF = ..., subok: bool = ..., shape: None | _ShapeLike = ...) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def zeros_like(a: Any, dtype: DTypeLike, order: _OrderKACF = ..., subok: bool = ..., shape: None | _ShapeLike = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def ones(shape: _ShapeLike, dtype: None = ..., order: _OrderCF = ..., *, like: _SupportsArrayFunc = ...) -> NDArray[float64]:
|
|
...
|
|
|
|
@overload
|
|
def ones(shape: _ShapeLike, dtype: _DTypeLike[_SCT], order: _OrderCF = ..., *, like: _SupportsArrayFunc = ...) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def ones(shape: _ShapeLike, dtype: DTypeLike, order: _OrderCF = ..., *, like: _SupportsArrayFunc = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def ones_like(a: _ArrayType, dtype: None = ..., order: _OrderKACF = ..., subok: Literal[True] = ..., shape: None = ...) -> _ArrayType:
|
|
...
|
|
|
|
@overload
|
|
def ones_like(a: _ArrayLike[_SCT], dtype: None = ..., order: _OrderKACF = ..., subok: bool = ..., shape: None | _ShapeLike = ...) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def ones_like(a: object, dtype: None = ..., order: _OrderKACF = ..., subok: bool = ..., shape: None | _ShapeLike = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def ones_like(a: Any, dtype: _DTypeLike[_SCT], order: _OrderKACF = ..., subok: bool = ..., shape: None | _ShapeLike = ...) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def ones_like(a: Any, dtype: DTypeLike, order: _OrderKACF = ..., subok: bool = ..., shape: None | _ShapeLike = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def full(shape: _ShapeLike, fill_value: Any, dtype: None = ..., order: _OrderCF = ..., *, like: _SupportsArrayFunc = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def full(shape: _ShapeLike, fill_value: Any, dtype: _DTypeLike[_SCT], order: _OrderCF = ..., *, like: _SupportsArrayFunc = ...) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def full(shape: _ShapeLike, fill_value: Any, dtype: DTypeLike, order: _OrderCF = ..., *, like: _SupportsArrayFunc = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def full_like(a: _ArrayType, fill_value: Any, dtype: None = ..., order: _OrderKACF = ..., subok: Literal[True] = ..., shape: None = ...) -> _ArrayType:
|
|
...
|
|
|
|
@overload
|
|
def full_like(a: _ArrayLike[_SCT], fill_value: Any, dtype: None = ..., order: _OrderKACF = ..., subok: bool = ..., shape: None | _ShapeLike = ...) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def full_like(a: object, fill_value: Any, dtype: None = ..., order: _OrderKACF = ..., subok: bool = ..., shape: None | _ShapeLike = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def full_like(a: Any, fill_value: Any, dtype: _DTypeLike[_SCT], order: _OrderKACF = ..., subok: bool = ..., shape: None | _ShapeLike = ...) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def full_like(a: Any, fill_value: Any, dtype: DTypeLike, order: _OrderKACF = ..., subok: bool = ..., shape: None | _ShapeLike = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def count_nonzero(a: ArrayLike, axis: None = ..., *, keepdims: Literal[False] = ...) -> int:
|
|
...
|
|
|
|
@overload
|
|
def count_nonzero(a: ArrayLike, axis: _ShapeLike = ..., *, keepdims: bool = ...) -> Any:
|
|
...
|
|
|
|
def isfortran(a: NDArray[Any] | generic) -> bool:
|
|
...
|
|
|
|
def argwhere(a: ArrayLike) -> NDArray[intp]:
|
|
...
|
|
|
|
def flatnonzero(a: ArrayLike) -> NDArray[intp]:
|
|
...
|
|
|
|
@overload
|
|
def correlate(a: _ArrayLikeUnknown, v: _ArrayLikeUnknown, mode: _CorrelateMode = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def correlate(a: _ArrayLikeBool_co, v: _ArrayLikeBool_co, mode: _CorrelateMode = ...) -> NDArray[bool_]:
|
|
...
|
|
|
|
@overload
|
|
def correlate(a: _ArrayLikeUInt_co, v: _ArrayLikeUInt_co, mode: _CorrelateMode = ...) -> NDArray[unsignedinteger[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def correlate(a: _ArrayLikeInt_co, v: _ArrayLikeInt_co, mode: _CorrelateMode = ...) -> NDArray[signedinteger[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def correlate(a: _ArrayLikeFloat_co, v: _ArrayLikeFloat_co, mode: _CorrelateMode = ...) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def correlate(a: _ArrayLikeComplex_co, v: _ArrayLikeComplex_co, mode: _CorrelateMode = ...) -> NDArray[complexfloating[Any, Any]]:
|
|
...
|
|
|
|
@overload
|
|
def correlate(a: _ArrayLikeTD64_co, v: _ArrayLikeTD64_co, mode: _CorrelateMode = ...) -> NDArray[timedelta64]:
|
|
...
|
|
|
|
@overload
|
|
def correlate(a: _ArrayLikeObject_co, v: _ArrayLikeObject_co, mode: _CorrelateMode = ...) -> NDArray[object_]:
|
|
...
|
|
|
|
@overload
|
|
def convolve(a: _ArrayLikeUnknown, v: _ArrayLikeUnknown, mode: _CorrelateMode = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def convolve(a: _ArrayLikeBool_co, v: _ArrayLikeBool_co, mode: _CorrelateMode = ...) -> NDArray[bool_]:
|
|
...
|
|
|
|
@overload
|
|
def convolve(a: _ArrayLikeUInt_co, v: _ArrayLikeUInt_co, mode: _CorrelateMode = ...) -> NDArray[unsignedinteger[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def convolve(a: _ArrayLikeInt_co, v: _ArrayLikeInt_co, mode: _CorrelateMode = ...) -> NDArray[signedinteger[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def convolve(a: _ArrayLikeFloat_co, v: _ArrayLikeFloat_co, mode: _CorrelateMode = ...) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def convolve(a: _ArrayLikeComplex_co, v: _ArrayLikeComplex_co, mode: _CorrelateMode = ...) -> NDArray[complexfloating[Any, Any]]:
|
|
...
|
|
|
|
@overload
|
|
def convolve(a: _ArrayLikeTD64_co, v: _ArrayLikeTD64_co, mode: _CorrelateMode = ...) -> NDArray[timedelta64]:
|
|
...
|
|
|
|
@overload
|
|
def convolve(a: _ArrayLikeObject_co, v: _ArrayLikeObject_co, mode: _CorrelateMode = ...) -> NDArray[object_]:
|
|
...
|
|
|
|
@overload
|
|
def outer(a: _ArrayLikeUnknown, b: _ArrayLikeUnknown, out: None = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def outer(a: _ArrayLikeBool_co, b: _ArrayLikeBool_co, out: None = ...) -> NDArray[bool_]:
|
|
...
|
|
|
|
@overload
|
|
def outer(a: _ArrayLikeUInt_co, b: _ArrayLikeUInt_co, out: None = ...) -> NDArray[unsignedinteger[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def outer(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, out: None = ...) -> NDArray[signedinteger[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def outer(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, out: None = ...) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def outer(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, out: None = ...) -> NDArray[complexfloating[Any, Any]]:
|
|
...
|
|
|
|
@overload
|
|
def outer(a: _ArrayLikeTD64_co, b: _ArrayLikeTD64_co, out: None = ...) -> NDArray[timedelta64]:
|
|
...
|
|
|
|
@overload
|
|
def outer(a: _ArrayLikeObject_co, b: _ArrayLikeObject_co, out: None = ...) -> NDArray[object_]:
|
|
...
|
|
|
|
@overload
|
|
def outer(a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, b: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, out: _ArrayType) -> _ArrayType:
|
|
...
|
|
|
|
@overload
|
|
def tensordot(a: _ArrayLikeUnknown, b: _ArrayLikeUnknown, axes: int | tuple[_ShapeLike, _ShapeLike] = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def tensordot(a: _ArrayLikeBool_co, b: _ArrayLikeBool_co, axes: int | tuple[_ShapeLike, _ShapeLike] = ...) -> NDArray[bool_]:
|
|
...
|
|
|
|
@overload
|
|
def tensordot(a: _ArrayLikeUInt_co, b: _ArrayLikeUInt_co, axes: int | tuple[_ShapeLike, _ShapeLike] = ...) -> NDArray[unsignedinteger[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def tensordot(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, axes: int | tuple[_ShapeLike, _ShapeLike] = ...) -> NDArray[signedinteger[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def tensordot(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, axes: int | tuple[_ShapeLike, _ShapeLike] = ...) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def tensordot(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, axes: int | tuple[_ShapeLike, _ShapeLike] = ...) -> NDArray[complexfloating[Any, Any]]:
|
|
...
|
|
|
|
@overload
|
|
def tensordot(a: _ArrayLikeTD64_co, b: _ArrayLikeTD64_co, axes: int | tuple[_ShapeLike, _ShapeLike] = ...) -> NDArray[timedelta64]:
|
|
...
|
|
|
|
@overload
|
|
def tensordot(a: _ArrayLikeObject_co, b: _ArrayLikeObject_co, axes: int | tuple[_ShapeLike, _ShapeLike] = ...) -> NDArray[object_]:
|
|
...
|
|
|
|
@overload
|
|
def roll(a: _ArrayLike[_SCT], shift: _ShapeLike, axis: None | _ShapeLike = ...) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def roll(a: ArrayLike, shift: _ShapeLike, axis: None | _ShapeLike = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
def rollaxis(a: NDArray[_SCT], axis: int, start: int = ...) -> NDArray[_SCT]:
|
|
...
|
|
|
|
def moveaxis(a: NDArray[_SCT], source: _ShapeLike, destination: _ShapeLike) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def cross(a: _ArrayLikeUnknown, b: _ArrayLikeUnknown, axisa: int = ..., axisb: int = ..., axisc: int = ..., axis: None | int = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def cross(a: _ArrayLikeBool_co, b: _ArrayLikeBool_co, axisa: int = ..., axisb: int = ..., axisc: int = ..., axis: None | int = ...) -> NoReturn:
|
|
...
|
|
|
|
@overload
|
|
def cross(a: _ArrayLikeUInt_co, b: _ArrayLikeUInt_co, axisa: int = ..., axisb: int = ..., axisc: int = ..., axis: None | int = ...) -> NDArray[unsignedinteger[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def cross(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, axisa: int = ..., axisb: int = ..., axisc: int = ..., axis: None | int = ...) -> NDArray[signedinteger[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def cross(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, axisa: int = ..., axisb: int = ..., axisc: int = ..., axis: None | int = ...) -> NDArray[floating[Any]]:
|
|
...
|
|
|
|
@overload
|
|
def cross(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, axisa: int = ..., axisb: int = ..., axisc: int = ..., axis: None | int = ...) -> NDArray[complexfloating[Any, Any]]:
|
|
...
|
|
|
|
@overload
|
|
def cross(a: _ArrayLikeObject_co, b: _ArrayLikeObject_co, axisa: int = ..., axisb: int = ..., axisc: int = ..., axis: None | int = ...) -> NDArray[object_]:
|
|
...
|
|
|
|
@overload
|
|
def indices(dimensions: Sequence[int], dtype: type[int] = ..., sparse: Literal[False] = ...) -> NDArray[int_]:
|
|
...
|
|
|
|
@overload
|
|
def indices(dimensions: Sequence[int], dtype: type[int] = ..., sparse: Literal[True] = ...) -> tuple[NDArray[int_], ...]:
|
|
...
|
|
|
|
@overload
|
|
def indices(dimensions: Sequence[int], dtype: _DTypeLike[_SCT], sparse: Literal[False] = ...) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def indices(dimensions: Sequence[int], dtype: _DTypeLike[_SCT], sparse: Literal[True]) -> tuple[NDArray[_SCT], ...]:
|
|
...
|
|
|
|
@overload
|
|
def indices(dimensions: Sequence[int], dtype: DTypeLike, sparse: Literal[False] = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
@overload
|
|
def indices(dimensions: Sequence[int], dtype: DTypeLike, sparse: Literal[True]) -> tuple[NDArray[Any], ...]:
|
|
...
|
|
|
|
def fromfunction(function: Callable[..., _T], shape: Sequence[int], *, dtype: DTypeLike = ..., like: _SupportsArrayFunc = ..., **kwargs: Any) -> _T:
|
|
...
|
|
|
|
def isscalar(element: object) -> TypeGuard[generic | bool | int | float | complex | str | bytes | memoryview]:
|
|
...
|
|
|
|
def binary_repr(num: SupportsIndex, width: None | int = ...) -> str:
|
|
...
|
|
|
|
def base_repr(number: SupportsAbs[float], base: float = ..., padding: SupportsIndex = ...) -> str:
|
|
...
|
|
|
|
@overload
|
|
def identity(n: int, dtype: None = ..., *, like: _SupportsArrayFunc = ...) -> NDArray[float64]:
|
|
...
|
|
|
|
@overload
|
|
def identity(n: int, dtype: _DTypeLike[_SCT], *, like: _SupportsArrayFunc = ...) -> NDArray[_SCT]:
|
|
...
|
|
|
|
@overload
|
|
def identity(n: int, dtype: DTypeLike, *, like: _SupportsArrayFunc = ...) -> NDArray[Any]:
|
|
...
|
|
|
|
def allclose(a: ArrayLike, b: ArrayLike, rtol: float = ..., atol: float = ..., equal_nan: bool = ...) -> bool:
|
|
...
|
|
|
|
@overload
|
|
def isclose(a: _ScalarLike_co, b: _ScalarLike_co, rtol: float = ..., atol: float = ..., equal_nan: bool = ...) -> bool_:
|
|
...
|
|
|
|
@overload
|
|
def isclose(a: ArrayLike, b: ArrayLike, rtol: float = ..., atol: float = ..., equal_nan: bool = ...) -> NDArray[bool_]:
|
|
...
|
|
|
|
def array_equal(a1: ArrayLike, a2: ArrayLike, equal_nan: bool = ...) -> bool:
|
|
...
|
|
|
|
def array_equiv(a1: ArrayLike, a2: ArrayLike) -> bool:
|
|
...
|
|
|