Initial configuration commit
This commit is contained in:
commit
31c8abea59
266 changed files with 780274 additions and 0 deletions
21
typings/seaborn/__init__.pyi
Normal file
21
typings/seaborn/__init__.pyi
Normal file
|
@ -0,0 +1,21 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import matplotlib as mpl
|
||||
from .rcmod import *
|
||||
from .utils import *
|
||||
from .palettes import *
|
||||
from .relational import *
|
||||
from .regression import *
|
||||
from .categorical import *
|
||||
from .distributions import *
|
||||
from .matrix import *
|
||||
from .miscplot import *
|
||||
from .axisgrid import *
|
||||
from .widgets import *
|
||||
from .colors import crayons, xkcd_rgb
|
||||
from . import cm
|
||||
|
||||
_orig_rc_params = ...
|
||||
__version__ = ...
|
275
typings/seaborn/_core.pyi
Normal file
275
typings/seaborn/_core.pyi
Normal file
|
@ -0,0 +1,275 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from ._decorators import share_init_params_with_map
|
||||
|
||||
class SemanticMapping:
|
||||
"""Base class for mapping data values to plot attributes."""
|
||||
map_type = ...
|
||||
levels = ...
|
||||
lookup_table = ...
|
||||
def __init__(self, plotter) -> None:
|
||||
...
|
||||
|
||||
def map(cls, plotter, *args, **kwargs):
|
||||
...
|
||||
|
||||
def __call__(self, key, *args, **kwargs): # -> list[Unknown]:
|
||||
"""Get the attribute(s) values for the data key."""
|
||||
...
|
||||
|
||||
|
||||
|
||||
@share_init_params_with_map
|
||||
class HueMapping(SemanticMapping):
|
||||
"""Mapping that sets artist colors according to data values."""
|
||||
palette = ...
|
||||
norm = ...
|
||||
cmap = ...
|
||||
def __init__(self, plotter, palette=..., order=..., norm=...) -> None:
|
||||
"""Map the levels of the `hue` variable to distinct colors.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
# TODO add generic parameters
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def infer_map_type(self, palette, norm, input_format, var_type): # -> Literal['categorical', 'numeric']:
|
||||
"""Determine how to implement the mapping."""
|
||||
...
|
||||
|
||||
def categorical_mapping(self, data, palette, order): # -> tuple[list[Any], dict[Unknown, Unknown] | dict[Any, str | tuple[float, float, float]]]:
|
||||
"""Determine colors when the hue mapping is categorical."""
|
||||
...
|
||||
|
||||
def numeric_mapping(self, data, palette, norm): # -> tuple[list[Unknown] | list[Any], dict[Unknown, Unknown], Unknown, Unknown | _ColorPalette | list[tuple[float, float, float]] | Any | list[str] | Literal['ch:']]:
|
||||
"""Determine colors when the hue variable is quantitative."""
|
||||
...
|
||||
|
||||
|
||||
|
||||
@share_init_params_with_map
|
||||
class SizeMapping(SemanticMapping):
|
||||
"""Mapping that sets artist sizes according to data values."""
|
||||
norm = ...
|
||||
def __init__(self, plotter, sizes=..., order=..., norm=...) -> None:
|
||||
"""Map the levels of the `size` variable to distinct values.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
# TODO add generic parameters
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def infer_map_type(self, norm, sizes, var_type): # -> Literal['numeric', 'categorical']:
|
||||
...
|
||||
|
||||
def categorical_mapping(self, data, sizes, order): # -> tuple[list[Any], dict[Unknown, Unknown] | dict[Any, Unknown]]:
|
||||
...
|
||||
|
||||
def numeric_mapping(self, data, sizes, norm): # -> tuple[list[Any], dict[Unknown, Unknown] | dict[Any, Unknown], Unknown]:
|
||||
...
|
||||
|
||||
|
||||
|
||||
@share_init_params_with_map
|
||||
class StyleMapping(SemanticMapping):
|
||||
"""Mapping that sets artist style according to data values."""
|
||||
map_type = ...
|
||||
def __init__(self, plotter, markers=..., dashes=..., order=...) -> None:
|
||||
"""Map the levels of the `style` variable to distinct values.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
# TODO add generic parameters
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
|
||||
|
||||
class VectorPlotter:
|
||||
"""Base class for objects underlying *plot functions."""
|
||||
_semantic_mappings = ...
|
||||
semantics = ...
|
||||
wide_structure = ...
|
||||
flat_structure = ...
|
||||
_default_size_range = ...
|
||||
def __init__(self, data=..., variables=...) -> None:
|
||||
...
|
||||
|
||||
@classmethod
|
||||
def get_semantics(cls, kwargs, semantics=...): # -> dict[Unknown, Unknown]:
|
||||
"""Subset a dictionary` arguments with known semantic variables."""
|
||||
...
|
||||
|
||||
@property
|
||||
def has_xy_data(self): # -> bool:
|
||||
"""Return True at least one of x or y is defined."""
|
||||
...
|
||||
|
||||
@property
|
||||
def var_levels(self): # -> dict[Unknown, Unknown]:
|
||||
"""Property interface to ordered list of variables levels.
|
||||
|
||||
Each time it's accessed, it updates the var_levels dictionary with the
|
||||
list of levels in the current semantic mappers. But it also allows the
|
||||
dictionary to persist, so it can be used to set levels by a key. This is
|
||||
used to track the list of col/row levels using an attached FacetGrid
|
||||
object, but it's kind of messy and ideally fixed by improving the
|
||||
faceting logic so it interfaces better with the modern approach to
|
||||
tracking plot variables.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def assign_variables(self, data=..., variables=...): # -> Self@VectorPlotter:
|
||||
"""Define plot variables, optionally using lookup from `data`."""
|
||||
...
|
||||
|
||||
def iter_data(self, grouping_vars=..., reverse=..., from_comp_data=...): # -> Generator[tuple[dict[str | Unknown, Any], DataFrame | Series | Unknown] | tuple[dict[Unknown, Unknown], DataFrame | Unknown], Any, None]:
|
||||
"""Generator for getting subsets of data defined by semantic variables.
|
||||
|
||||
Also injects "col" and "row" into grouping semantics.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
grouping_vars : string or list of strings
|
||||
Semantic variables that define the subsets of data.
|
||||
reverse : bool, optional
|
||||
If True, reverse the order of iteration.
|
||||
from_comp_data : bool, optional
|
||||
If True, use self.comp_data rather than self.plot_data
|
||||
|
||||
Yields
|
||||
------
|
||||
sub_vars : dict
|
||||
Keys are semantic names, values are the level of that semantic.
|
||||
sub_data : :class:`pandas.DataFrame`
|
||||
Subset of ``plot_data`` for this combination of semantic values.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
@property
|
||||
def comp_data(self): # -> DataFrame:
|
||||
"""Dataframe with numeric x and y, after unit conversion and log scaling."""
|
||||
...
|
||||
|
||||
|
||||
|
||||
def variable_type(vector, boolean_type=...): # -> str:
|
||||
"""
|
||||
Determine whether a vector contains numeric, categorical, or datetime data.
|
||||
|
||||
This function differs from the pandas typing API in two ways:
|
||||
|
||||
- Python sequences or object-typed PyData objects are considered numeric if
|
||||
all of their entries are numeric.
|
||||
- String or mixed-type data are considered categorical even if not
|
||||
explicitly represented as a :class:`pandas.api.types.CategoricalDtype`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
vector : :func:`pandas.Series`, :func:`numpy.ndarray`, or Python sequence
|
||||
Input data to test.
|
||||
boolean_type : 'numeric' or 'categorical'
|
||||
Type to use for vectors containing only 0s and 1s (and NAs).
|
||||
|
||||
Returns
|
||||
-------
|
||||
var_type : 'numeric', 'categorical', or 'datetime'
|
||||
Name identifying the type of data in the vector.
|
||||
"""
|
||||
...
|
||||
|
||||
def infer_orient(x=..., y=..., orient=..., require_numeric=...): # -> Literal['v', 'h']:
|
||||
"""Determine how the plot should be oriented based on the data.
|
||||
|
||||
For historical reasons, the convention is to call a plot "horizontally"
|
||||
or "vertically" oriented based on the axis representing its dependent
|
||||
variable. Practically, this is used when determining the axis for
|
||||
numerical aggregation.
|
||||
|
||||
Paramters
|
||||
---------
|
||||
x, y : Vector data or None
|
||||
Positional data vectors for the plot.
|
||||
orient : string or None
|
||||
Specified orientation, which must start with "v" or "h" if not None.
|
||||
require_numeric : bool
|
||||
If set, raise when the implied dependent variable is not numeric.
|
||||
|
||||
Returns
|
||||
-------
|
||||
orient : "v" or "h"
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError: When `orient` is not None and does not start with "h" or "v"
|
||||
TypeError: When dependant variable is not numeric, with `require_numeric`
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def unique_dashes(n): # -> list[Unknown]:
|
||||
"""Build an arbitrarily long list of unique dash styles for lines.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
Number of unique dash specs to generate.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dashes : list of strings or tuples
|
||||
Valid arguments for the ``dashes`` parameter on
|
||||
:class:`matplotlib.lines.Line2D`. The first spec is a solid
|
||||
line (``""``), the remainder are sequences of long and short
|
||||
dashes.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def unique_markers(n): # -> list[Unknown]:
|
||||
"""Build an arbitrarily long list of unique marker styles for points.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
Number of unique marker specs to generate.
|
||||
|
||||
Returns
|
||||
-------
|
||||
markers : list of string or tuples
|
||||
Values for defining :class:`matplotlib.markers.MarkerStyle` objects.
|
||||
All markers will be filled.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def categorical_order(vector, order=...): # -> list[Any]:
|
||||
"""Return a list of unique data values.
|
||||
|
||||
Determine an ordered list of levels in ``values``.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
vector : list, array, Categorical, or Series
|
||||
Vector of "categorical" values
|
||||
order : list-like, optional
|
||||
Desired order of category levels to override the order determined
|
||||
from the ``values`` object.
|
||||
|
||||
Returns
|
||||
-------
|
||||
order : list
|
||||
Ordered list of category levels not including null values.
|
||||
|
||||
"""
|
||||
...
|
||||
|
8
typings/seaborn/_decorators.pyi
Normal file
8
typings/seaborn/_decorators.pyi
Normal file
|
@ -0,0 +1,8 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
def share_init_params_with_map(cls):
|
||||
"""Make cls.map a classmethod with same signature as cls.__init__."""
|
||||
...
|
||||
|
30
typings/seaborn/_docstrings.pyi
Normal file
30
typings/seaborn/_docstrings.pyi
Normal file
|
@ -0,0 +1,30 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
class DocstringComponents:
|
||||
regexp = ...
|
||||
def __init__(self, comp_dict, strip_whitespace=...) -> None:
|
||||
"""Read entries from a dict, optionally stripping outer whitespace."""
|
||||
...
|
||||
|
||||
def __getattr__(self, attr): # -> Any:
|
||||
"""Provided dot access to entries."""
|
||||
...
|
||||
|
||||
@classmethod
|
||||
def from_nested_components(cls, **kwargs): # -> Self@DocstringComponents:
|
||||
"""Add multiple sub-sets of components."""
|
||||
...
|
||||
|
||||
@classmethod
|
||||
def from_function_params(cls, func): # -> Self@DocstringComponents:
|
||||
"""Use the numpydoc parser to extract components from existing func."""
|
||||
...
|
||||
|
||||
|
||||
|
||||
_core_params = ...
|
||||
_core_returns = ...
|
||||
_seealso_blurbs = ...
|
||||
_core_docs = ...
|
132
typings/seaborn/_statistics.pyi
Normal file
132
typings/seaborn/_statistics.pyi
Normal file
|
@ -0,0 +1,132 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
"""Statistical transformations for visualization.
|
||||
|
||||
This module is currently private, but is being written to eventually form part
|
||||
of the public API.
|
||||
|
||||
The classes should behave roughly in the style of scikit-learn.
|
||||
|
||||
- All data-independent parameters should be passed to the class constructor.
|
||||
- Each class should impelment a default transformation that is exposed through
|
||||
__call__. These are currently written for vector arguements, but I think
|
||||
consuming a whole `plot_data` DataFrame and return it with transformed
|
||||
variables would make more sense.
|
||||
- Some class have data-dependent preprocessing that should be cached and used
|
||||
multiple times (think defining histogram bins off all data and then counting
|
||||
observations within each bin multiple times per data subsets). These currently
|
||||
have unique names, but it would be good to have a common name. Not quite
|
||||
`fit`, but something similar.
|
||||
- Alternatively, the transform interface could take some information about grouping
|
||||
variables and do a groupby internally.
|
||||
- Some classes should define alternate transforms that might make the most sense
|
||||
with a different function. For example, KDE usually evaluates the distribution
|
||||
on a regular grid, but it would be useful for it to transform at the actual
|
||||
datapoints. Then again, this could be controlled by a parameter at the time of
|
||||
class instantiation.
|
||||
|
||||
"""
|
||||
class KDE:
|
||||
"""Univariate and bivariate kernel density estimator."""
|
||||
def __init__(self, *, bw_method=..., bw_adjust=..., gridsize=..., cut=..., clip=..., cumulative=...) -> None:
|
||||
"""Initialize the estimator with its parameters.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
bw_method : string, scalar, or callable, optional
|
||||
Method for determining the smoothing bandwidth to use; passed to
|
||||
:class:`scipy.stats.gaussian_kde`.
|
||||
bw_adjust : number, optional
|
||||
Factor that multiplicatively scales the value chosen using
|
||||
``bw_method``. Increasing will make the curve smoother. See Notes.
|
||||
gridsize : int, optional
|
||||
Number of points on each dimension of the evaluation grid.
|
||||
cut : number, optional
|
||||
Factor, multiplied by the smoothing bandwidth, that determines how
|
||||
far the evaluation grid extends past the extreme datapoints. When
|
||||
set to 0, truncate the curve at the data limits.
|
||||
clip : pair of numbers None, or a pair of such pairs
|
||||
Do not evaluate the density outside of these limits.
|
||||
cumulative : bool, optional
|
||||
If True, estimate a cumulative distribution function.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def define_support(self, x1, x2=..., weights=..., cache=...): # -> NDArray[floating[Any]] | tuple[NDArray[floating[Any]], NDArray[floating[Any]]]:
|
||||
"""Create the evaluation grid for a given data set."""
|
||||
...
|
||||
|
||||
def __call__(self, x1, x2=..., weights=...): # -> tuple[NDArray[Unknown] | Unknown, NDArray[floating[Any]] | tuple[NDArray[floating[Any]], NDArray[floating[Any]]]] | tuple[NDArray[float64] | Unknown, NDArray[floating[Any]] | tuple[NDArray[floating[Any]], NDArray[floating[Any]]]]:
|
||||
"""Fit and evaluate on univariate or bivariate data."""
|
||||
...
|
||||
|
||||
|
||||
|
||||
class Histogram:
|
||||
"""Univariate and bivariate histogram estimator."""
|
||||
def __init__(self, stat=..., bins=..., binwidth=..., binrange=..., discrete=..., cumulative=...) -> None:
|
||||
"""Initialize the estimator with its parameters.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
stat : {"count", "frequency", "density", "probability"}
|
||||
Aggregate statistic to compute in each bin.
|
||||
|
||||
- ``count`` shows the number of observations
|
||||
- ``frequency`` shows the number of observations divided by the bin width
|
||||
- ``density`` normalizes counts so that the area of the histogram is 1
|
||||
- ``probability`` normalizes counts so that the sum of the bar heights is 1
|
||||
|
||||
bins : str, number, vector, or a pair of such values
|
||||
Generic bin parameter that can be the name of a reference rule,
|
||||
the number of bins, or the breaks of the bins.
|
||||
Passed to :func:`numpy.histogram_bin_edges`.
|
||||
binwidth : number or pair of numbers
|
||||
Width of each bin, overrides ``bins`` but can be used with
|
||||
``binrange``.
|
||||
binrange : pair of numbers or a pair of pairs
|
||||
Lowest and highest value for bin edges; can be used either
|
||||
with ``bins`` or ``binwidth``. Defaults to data extremes.
|
||||
discrete : bool or pair of bools
|
||||
If True, set ``binwidth`` and ``binrange`` such that bin
|
||||
edges cover integer values in the dataset.
|
||||
cumulative : bool
|
||||
If True, return the cumulative statistic.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def define_bin_edges(self, x1, x2=..., weights=..., cache=...): # -> NDArray[Any] | tuple[Unknown, ...]:
|
||||
"""Given data, return the edges of the histogram bins."""
|
||||
...
|
||||
|
||||
def __call__(self, x1, x2=..., weights=...): # -> tuple[Any | ndarray[Any, Any] | NDArray[float64] | NDArray[Any], Unknown | NDArray[Any] | tuple[Unknown, ...]] | tuple[Unknown, Unknown | NDArray[Any] | tuple[Unknown, ...]]:
|
||||
"""Count the occurrances in each bin, maybe normalize."""
|
||||
...
|
||||
|
||||
|
||||
|
||||
class ECDF:
|
||||
"""Univariate empirical cumulative distribution estimator."""
|
||||
def __init__(self, stat=..., complementary=...) -> None:
|
||||
"""Initialize the class with its paramters
|
||||
|
||||
Parameters
|
||||
----------
|
||||
stat : {{"proportion", "count"}}
|
||||
Distribution statistic to compute.
|
||||
complementary : bool
|
||||
If True, use the complementary CDF (1 - CDF)
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def __call__(self, x1, x2=..., weights=...): # -> tuple[Any, Any]:
|
||||
"""Return proportion or count of observations below each sorted datapoint."""
|
||||
...
|
||||
|
||||
|
||||
|
16
typings/seaborn/_testing.pyi
Normal file
16
typings/seaborn/_testing.pyi
Normal file
|
@ -0,0 +1,16 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
LINE_PROPS = ...
|
||||
COLLECTION_PROPS = ...
|
||||
BAR_PROPS = ...
|
||||
def assert_artists_equal(list1, list2, properties): # -> None:
|
||||
...
|
||||
|
||||
def assert_legends_equal(leg1, leg2): # -> None:
|
||||
...
|
||||
|
||||
def assert_plots_equal(ax1, ax2, labels=...): # -> None:
|
||||
...
|
||||
|
35
typings/seaborn/algorithms.pyi
Normal file
35
typings/seaborn/algorithms.pyi
Normal file
|
@ -0,0 +1,35 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
"""Algorithms to support fitting routines in seaborn plotting functions."""
|
||||
def bootstrap(*args, **kwargs): # -> NDArray[Unknown]:
|
||||
"""Resample one or more arrays with replacement and store aggregate values.
|
||||
|
||||
Positional arguments are a sequence of arrays to bootstrap along the first
|
||||
axis and pass to a summary function.
|
||||
|
||||
Keyword arguments:
|
||||
n_boot : int, default 10000
|
||||
Number of iterations
|
||||
axis : int, default None
|
||||
Will pass axis to ``func`` as a keyword argument.
|
||||
units : array, default None
|
||||
Array of sampling unit IDs. When used the bootstrap resamples units
|
||||
and then observations within units instead of individual
|
||||
datapoints.
|
||||
func : string or callable, default np.mean
|
||||
Function to call on the args that are passed in. If string, tries
|
||||
to use as named method on numpy array.
|
||||
seed : Generator | SeedSequence | RandomState | int | None
|
||||
Seed for the random number generator; useful if you want
|
||||
reproducible resamples.
|
||||
|
||||
Returns
|
||||
-------
|
||||
boot_dist: array
|
||||
array of bootstrapped statistic values
|
||||
|
||||
"""
|
||||
...
|
||||
|
548
typings/seaborn/axisgrid.pyi
Normal file
548
typings/seaborn/axisgrid.pyi
Normal file
|
@ -0,0 +1,548 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from ._decorators import _deprecate_positional_args
|
||||
|
||||
__all__ = ["FacetGrid", "PairGrid", "JointGrid", "pairplot", "jointplot"]
|
||||
_param_docs = ...
|
||||
class Grid:
|
||||
"""Base class for grids of subplots."""
|
||||
_margin_titles = ...
|
||||
_legend_out = ...
|
||||
def __init__(self) -> None:
|
||||
...
|
||||
|
||||
def set(self, **kwargs): # -> Self@Grid:
|
||||
"""Set attributes on each subplot Axes."""
|
||||
...
|
||||
|
||||
def savefig(self, *args, **kwargs): # -> None:
|
||||
"""Save the figure."""
|
||||
...
|
||||
|
||||
def tight_layout(self, *args, **kwargs): # -> None:
|
||||
"""Call fig.tight_layout within rect that exclude the legend."""
|
||||
...
|
||||
|
||||
def add_legend(self, legend_data=..., title=..., label_order=..., adjust_subtitles=..., **kwargs): # -> Self@Grid:
|
||||
"""Draw a legend, maybe placing it outside axes and resizing the figure.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
legend_data : dict
|
||||
Dictionary mapping label names (or two-element tuples where the
|
||||
second element is a label name) to matplotlib artist handles. The
|
||||
default reads from ``self._legend_data``.
|
||||
title : string
|
||||
Title for the legend. The default reads from ``self._hue_var``.
|
||||
label_order : list of labels
|
||||
The order that the legend entries should appear in. The default
|
||||
reads from ``self.hue_names``.
|
||||
adjust_subtitles : bool
|
||||
If True, modify entries with invisible artists to left-align
|
||||
the labels and set the font size to that of a title.
|
||||
kwargs : key, value pairings
|
||||
Other keyword arguments are passed to the underlying legend methods
|
||||
on the Figure or Axes object.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : Grid instance
|
||||
Returns self for easy chaining.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
@property
|
||||
def legend(self): # -> None:
|
||||
"""The :class:`matplotlib.legend.Legend` object, if present."""
|
||||
...
|
||||
|
||||
|
||||
|
||||
_facet_docs = ...
|
||||
class FacetGrid(Grid):
|
||||
"""Multi-plot grid for plotting conditional relationships."""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, data, *, row=..., col=..., hue=..., col_wrap=..., sharex=..., sharey=..., height=..., aspect=..., palette=..., row_order=..., col_order=..., hue_order=..., hue_kws=..., dropna=..., legend_out=..., despine=..., margin_titles=..., xlim=..., ylim=..., subplot_kws=..., gridspec_kws=..., size=...) -> None:
|
||||
...
|
||||
|
||||
def facet_data(self): # -> Generator[tuple[tuple[int, int, int], Unknown], Any, None]:
|
||||
"""Generator for name indices and data subsets for each facet.
|
||||
|
||||
Yields
|
||||
------
|
||||
(i, j, k), data_ijk : tuple of ints, DataFrame
|
||||
The ints provide an index into the {row, col, hue}_names attribute,
|
||||
and the dataframe contains a subset of the full data corresponding
|
||||
to each facet. The generator yields subsets that correspond with
|
||||
the self.axes.flat iterator, or self.axes[i, j] when `col_wrap`
|
||||
is None.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def map(self, func, *args, **kwargs): # -> Self@FacetGrid:
|
||||
"""Apply a plotting function to each facet's subset of the data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
func : callable
|
||||
A plotting function that takes data and keyword arguments. It
|
||||
must plot to the currently active matplotlib Axes and take a
|
||||
`color` keyword argument. If faceting on the `hue` dimension,
|
||||
it must also take a `label` keyword argument.
|
||||
args : strings
|
||||
Column names in self.data that identify variables with data to
|
||||
plot. The data for each variable is passed to `func` in the
|
||||
order the variables are specified in the call.
|
||||
kwargs : keyword arguments
|
||||
All keyword arguments are passed to the plotting function.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : object
|
||||
Returns self.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def map_dataframe(self, func, *args, **kwargs): # -> Self@FacetGrid:
|
||||
"""Like ``.map`` but passes args as strings and inserts data in kwargs.
|
||||
|
||||
This method is suitable for plotting with functions that accept a
|
||||
long-form DataFrame as a `data` keyword argument and access the
|
||||
data in that DataFrame using string variable names.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
func : callable
|
||||
A plotting function that takes data and keyword arguments. Unlike
|
||||
the `map` method, a function used here must "understand" Pandas
|
||||
objects. It also must plot to the currently active matplotlib Axes
|
||||
and take a `color` keyword argument. If faceting on the `hue`
|
||||
dimension, it must also take a `label` keyword argument.
|
||||
args : strings
|
||||
Column names in self.data that identify variables with data to
|
||||
plot. The data for each variable is passed to `func` in the
|
||||
order the variables are specified in the call.
|
||||
kwargs : keyword arguments
|
||||
All keyword arguments are passed to the plotting function.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self : object
|
||||
Returns self.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def facet_axis(self, row_i, col_j, modify_state=...): # -> Any | ndarray[Any, dtype[Any]]:
|
||||
"""Make the axis identified by these indices active and return it."""
|
||||
...
|
||||
|
||||
def despine(self, **kwargs): # -> Self@FacetGrid:
|
||||
"""Remove axis spines from the facets."""
|
||||
...
|
||||
|
||||
def set_axis_labels(self, x_var=..., y_var=..., clear_inner=..., **kwargs): # -> Self@FacetGrid:
|
||||
"""Set axis labels on the left column and bottom row of the grid."""
|
||||
...
|
||||
|
||||
def set_xlabels(self, label=..., clear_inner=..., **kwargs): # -> Self@FacetGrid:
|
||||
"""Label the x axis on the bottom row of the grid."""
|
||||
...
|
||||
|
||||
def set_ylabels(self, label=..., clear_inner=..., **kwargs): # -> Self@FacetGrid:
|
||||
"""Label the y axis on the left column of the grid."""
|
||||
...
|
||||
|
||||
def set_xticklabels(self, labels=..., step=..., **kwargs): # -> Self@FacetGrid:
|
||||
"""Set x axis tick labels of the grid."""
|
||||
...
|
||||
|
||||
def set_yticklabels(self, labels=..., **kwargs): # -> Self@FacetGrid:
|
||||
"""Set y axis tick labels on the left column of the grid."""
|
||||
...
|
||||
|
||||
def set_titles(self, template=..., row_template=..., col_template=..., **kwargs): # -> Self@FacetGrid:
|
||||
"""Draw titles either above each facet or on the grid margins.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
template : string
|
||||
Template for all titles with the formatting keys {col_var} and
|
||||
{col_name} (if using a `col` faceting variable) and/or {row_var}
|
||||
and {row_name} (if using a `row` faceting variable).
|
||||
row_template:
|
||||
Template for the row variable when titles are drawn on the grid
|
||||
margins. Must have {row_var} and {row_name} formatting keys.
|
||||
col_template:
|
||||
Template for the row variable when titles are drawn on the grid
|
||||
margins. Must have {col_var} and {col_name} formatting keys.
|
||||
|
||||
Returns
|
||||
-------
|
||||
self: object
|
||||
Returns self.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
@property
|
||||
def fig(self): # -> Figure:
|
||||
"""The :class:`matplotlib.figure.Figure` with the plot."""
|
||||
...
|
||||
|
||||
@property
|
||||
def axes(self): # -> Any | NDArray[Any]:
|
||||
"""An array of the :class:`matplotlib.axes.Axes` objects in the grid."""
|
||||
...
|
||||
|
||||
@property
|
||||
def ax(self): # -> Any:
|
||||
"""The :class:`matplotlib.axes.Axes` when no faceting variables are assigned."""
|
||||
...
|
||||
|
||||
@property
|
||||
def axes_dict(self): # -> dict[Any, Any] | dict[tuple[Any, Any], Any]:
|
||||
"""A mapping of facet names to corresponding :class:`matplotlib.axes.Axes`.
|
||||
|
||||
If only one of ``row`` or ``col`` is assigned, each key is a string
|
||||
representing a level of that variable. If both facet dimensions are
|
||||
assigned, each key is a ``({row_level}, {col_level})`` tuple.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
|
||||
|
||||
class PairGrid(Grid):
|
||||
"""Subplot grid for plotting pairwise relationships in a dataset.
|
||||
|
||||
This object maps each variable in a dataset onto a column and row in a
|
||||
grid of multiple axes. Different axes-level plotting functions can be
|
||||
used to draw bivariate plots in the upper and lower triangles, and the
|
||||
the marginal distribution of each variable can be shown on the diagonal.
|
||||
|
||||
Several different common plots can be generated in a single line using
|
||||
:func:`pairplot`. Use :class:`PairGrid` when you need more flexibility.
|
||||
|
||||
See the :ref:`tutorial <grid_tutorial>` for more information.
|
||||
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, data, *, hue=..., hue_order=..., palette=..., hue_kws=..., vars=..., x_vars=..., y_vars=..., corner=..., diag_sharey=..., height=..., aspect=..., layout_pad=..., despine=..., dropna=..., size=...) -> None:
|
||||
"""Initialize the plot figure and PairGrid object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : DataFrame
|
||||
Tidy (long-form) dataframe where each column is a variable and
|
||||
each row is an observation.
|
||||
hue : string (variable name)
|
||||
Variable in ``data`` to map plot aspects to different colors. This
|
||||
variable will be excluded from the default x and y variables.
|
||||
hue_order : list of strings
|
||||
Order for the levels of the hue variable in the palette
|
||||
palette : dict or seaborn color palette
|
||||
Set of colors for mapping the ``hue`` variable. If a dict, keys
|
||||
should be values in the ``hue`` variable.
|
||||
hue_kws : dictionary of param -> list of values mapping
|
||||
Other keyword arguments to insert into the plotting call to let
|
||||
other plot attributes vary across levels of the hue variable (e.g.
|
||||
the markers in a scatterplot).
|
||||
vars : list of variable names
|
||||
Variables within ``data`` to use, otherwise use every column with
|
||||
a numeric datatype.
|
||||
{x, y}_vars : lists of variable names
|
||||
Variables within ``data`` to use separately for the rows and
|
||||
columns of the figure; i.e. to make a non-square plot.
|
||||
corner : bool
|
||||
If True, don't add axes to the upper (off-diagonal) triangle of the
|
||||
grid, making this a "corner" plot.
|
||||
height : scalar
|
||||
Height (in inches) of each facet.
|
||||
aspect : scalar
|
||||
Aspect * height gives the width (in inches) of each facet.
|
||||
layout_pad : scalar
|
||||
Padding between axes; passed to ``fig.tight_layout``.
|
||||
despine : boolean
|
||||
Remove the top and right spines from the plots.
|
||||
dropna : boolean
|
||||
Drop missing values from the data before plotting.
|
||||
|
||||
See Also
|
||||
--------
|
||||
pairplot : Easily drawing common uses of :class:`PairGrid`.
|
||||
FacetGrid : Subplot grid for plotting conditional relationships.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
.. include:: ../docstrings/PairGrid.rst
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def map(self, func, **kwargs): # -> Self@PairGrid:
|
||||
"""Plot with the same function in every subplot.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
func : callable plotting function
|
||||
Must take x, y arrays as positional arguments and draw onto the
|
||||
"currently active" matplotlib Axes. Also needs to accept kwargs
|
||||
called ``color`` and ``label``.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def map_lower(self, func, **kwargs): # -> Self@PairGrid:
|
||||
"""Plot with a bivariate function on the lower diagonal subplots.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
func : callable plotting function
|
||||
Must take x, y arrays as positional arguments and draw onto the
|
||||
"currently active" matplotlib Axes. Also needs to accept kwargs
|
||||
called ``color`` and ``label``.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def map_upper(self, func, **kwargs): # -> Self@PairGrid:
|
||||
"""Plot with a bivariate function on the upper diagonal subplots.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
func : callable plotting function
|
||||
Must take x, y arrays as positional arguments and draw onto the
|
||||
"currently active" matplotlib Axes. Also needs to accept kwargs
|
||||
called ``color`` and ``label``.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def map_offdiag(self, func, **kwargs): # -> Self@PairGrid:
|
||||
"""Plot with a bivariate function on the off-diagonal subplots.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
func : callable plotting function
|
||||
Must take x, y arrays as positional arguments and draw onto the
|
||||
"currently active" matplotlib Axes. Also needs to accept kwargs
|
||||
called ``color`` and ``label``.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def map_diag(self, func, **kwargs): # -> Self@PairGrid:
|
||||
"""Plot with a univariate function on each diagonal subplot.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
func : callable plotting function
|
||||
Must take an x array as a positional argument and draw onto the
|
||||
"currently active" matplotlib Axes. Also needs to accept kwargs
|
||||
called ``color`` and ``label``.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
|
||||
|
||||
class JointGrid:
|
||||
"""Grid for drawing a bivariate plot with marginal univariate plots.
|
||||
|
||||
Many plots can be drawn by using the figure-level interface :func:`jointplot`.
|
||||
Use this class directly when you need more flexibility.
|
||||
|
||||
"""
|
||||
@_deprecate_positional_args
|
||||
def __init__(self, *, x=..., y=..., data=..., height=..., ratio=..., space=..., dropna=..., xlim=..., ylim=..., size=..., marginal_ticks=..., hue=..., palette=..., hue_order=..., hue_norm=...) -> None:
|
||||
...
|
||||
|
||||
def plot(self, joint_func, marginal_func, **kwargs): # -> Self@JointGrid:
|
||||
"""Draw the plot by passing functions for joint and marginal axes.
|
||||
|
||||
This method passes the ``kwargs`` dictionary to both functions. If you
|
||||
need more control, call :meth:`JointGrid.plot_joint` and
|
||||
:meth:`JointGrid.plot_marginals` directly with specific parameters.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
joint_func, marginal_func: callables
|
||||
Functions to draw the bivariate and univariate plots. See methods
|
||||
referenced above for information about the required characteristics
|
||||
of these functions.
|
||||
kwargs
|
||||
Additional keyword arguments are passed to both functions.
|
||||
|
||||
Returns
|
||||
-------
|
||||
:class:`JointGrid` instance
|
||||
Returns ``self`` for easy method chaining.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def plot_joint(self, func, **kwargs): # -> Self@JointGrid:
|
||||
"""Draw a bivariate plot on the joint axes of the grid.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
func : plotting callable
|
||||
If a seaborn function, it should accept ``x`` and ``y``. Otherwise,
|
||||
it must accept ``x`` and ``y`` vectors of data as the first two
|
||||
positional arguments, and it must plot on the "current" axes.
|
||||
If ``hue`` was defined in the class constructor, the function must
|
||||
accept ``hue`` as a parameter.
|
||||
kwargs
|
||||
Keyword argument are passed to the plotting function.
|
||||
|
||||
Returns
|
||||
-------
|
||||
:class:`JointGrid` instance
|
||||
Returns ``self`` for easy method chaining.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def plot_marginals(self, func, **kwargs): # -> Self@JointGrid:
|
||||
"""Draw univariate plots on each marginal axes.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
func : plotting callable
|
||||
If a seaborn function, it should accept ``x`` and ``y`` and plot
|
||||
when only one of them is defined. Otherwise, it must accept a vector
|
||||
of data as the first positional argument and determine its orientation
|
||||
using the ``vertical`` parameter, and it must plot on the "current" axes.
|
||||
If ``hue`` was defined in the class constructor, it must accept ``hue``
|
||||
as a parameter.
|
||||
kwargs
|
||||
Keyword argument are passed to the plotting function.
|
||||
|
||||
Returns
|
||||
-------
|
||||
:class:`JointGrid` instance
|
||||
Returns ``self`` for easy method chaining.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def set_axis_labels(self, xlabel=..., ylabel=..., **kwargs): # -> Self@JointGrid:
|
||||
"""Set axis labels on the bivariate axes.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
xlabel, ylabel : strings
|
||||
Label names for the x and y variables.
|
||||
kwargs : key, value mappings
|
||||
Other keyword arguments are passed to the following functions:
|
||||
|
||||
- :meth:`matplotlib.axes.Axes.set_xlabel`
|
||||
- :meth:`matplotlib.axes.Axes.set_ylabel`
|
||||
|
||||
Returns
|
||||
-------
|
||||
:class:`JointGrid` instance
|
||||
Returns ``self`` for easy method chaining.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def savefig(self, *args, **kwargs): # -> None:
|
||||
"""Save the figure using a "tight" bounding box by default.
|
||||
|
||||
Wraps :meth:`matplotlib.figure.Figure.savefig`.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
|
||||
|
||||
@_deprecate_positional_args
|
||||
def pairplot(data, *, hue=..., hue_order=..., palette=..., vars=..., x_vars=..., y_vars=..., kind=..., diag_kind=..., markers=..., height=..., aspect=..., corner=..., dropna=..., plot_kws=..., diag_kws=..., grid_kws=..., size=...):
|
||||
"""Plot pairwise relationships in a dataset.
|
||||
|
||||
By default, this function will create a grid of Axes such that each numeric
|
||||
variable in ``data`` will by shared across the y-axes across a single row and
|
||||
the x-axes across a single column. The diagonal plots are treated
|
||||
differently: a univariate distribution plot is drawn to show the marginal
|
||||
distribution of the data in each column.
|
||||
|
||||
It is also possible to show a subset of variables or plot different
|
||||
variables on the rows and columns.
|
||||
|
||||
This is a high-level interface for :class:`PairGrid` that is intended to
|
||||
make it easy to draw a few common styles. You should use :class:`PairGrid`
|
||||
directly if you need more flexibility.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : `pandas.DataFrame`
|
||||
Tidy (long-form) dataframe where each column is a variable and
|
||||
each row is an observation.
|
||||
hue : name of variable in ``data``
|
||||
Variable in ``data`` to map plot aspects to different colors.
|
||||
hue_order : list of strings
|
||||
Order for the levels of the hue variable in the palette
|
||||
palette : dict or seaborn color palette
|
||||
Set of colors for mapping the ``hue`` variable. If a dict, keys
|
||||
should be values in the ``hue`` variable.
|
||||
vars : list of variable names
|
||||
Variables within ``data`` to use, otherwise use every column with
|
||||
a numeric datatype.
|
||||
{x, y}_vars : lists of variable names
|
||||
Variables within ``data`` to use separately for the rows and
|
||||
columns of the figure; i.e. to make a non-square plot.
|
||||
kind : {'scatter', 'kde', 'hist', 'reg'}
|
||||
Kind of plot to make.
|
||||
diag_kind : {'auto', 'hist', 'kde', None}
|
||||
Kind of plot for the diagonal subplots. If 'auto', choose based on
|
||||
whether or not ``hue`` is used.
|
||||
markers : single matplotlib marker code or list
|
||||
Either the marker to use for all scatterplot points or a list of markers
|
||||
with a length the same as the number of levels in the hue variable so that
|
||||
differently colored points will also have different scatterplot
|
||||
markers.
|
||||
height : scalar
|
||||
Height (in inches) of each facet.
|
||||
aspect : scalar
|
||||
Aspect * height gives the width (in inches) of each facet.
|
||||
corner : bool
|
||||
If True, don't add axes to the upper (off-diagonal) triangle of the
|
||||
grid, making this a "corner" plot.
|
||||
dropna : boolean
|
||||
Drop missing values from the data before plotting.
|
||||
{plot, diag, grid}_kws : dicts
|
||||
Dictionaries of keyword arguments. ``plot_kws`` are passed to the
|
||||
bivariate plotting function, ``diag_kws`` are passed to the univariate
|
||||
plotting function, and ``grid_kws`` are passed to the :class:`PairGrid`
|
||||
constructor.
|
||||
|
||||
Returns
|
||||
-------
|
||||
grid : :class:`PairGrid`
|
||||
Returns the underlying :class:`PairGrid` instance for further tweaking.
|
||||
|
||||
See Also
|
||||
--------
|
||||
PairGrid : Subplot grid for more flexible plotting of pairwise relationships.
|
||||
JointGrid : Grid for plotting joint and marginal distributions of two variables.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
.. include:: ../docstrings/pairplot.rst
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
@_deprecate_positional_args
|
||||
def jointplot(*, x=..., y=..., data=..., kind=..., color=..., height=..., ratio=..., space=..., dropna=..., xlim=..., ylim=..., marginal_ticks=..., joint_kws=..., marginal_kws=..., hue=..., palette=..., hue_order=..., hue_norm=..., **kwargs):
|
||||
...
|
||||
|
312
typings/seaborn/categorical.pyi
Normal file
312
typings/seaborn/categorical.pyi
Normal file
|
@ -0,0 +1,312 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from ._decorators import _deprecate_positional_args
|
||||
|
||||
__all__ = ["catplot", "factorplot", "stripplot", "swarmplot", "boxplot", "violinplot", "boxenplot", "pointplot", "barplot", "countplot"]
|
||||
class _CategoricalPlotter:
|
||||
width = ...
|
||||
default_palette = ...
|
||||
require_numeric = ...
|
||||
def establish_variables(self, x=..., y=..., hue=..., data=..., orient=..., order=..., hue_order=..., units=...):
|
||||
"""Convert input specification into a common representation."""
|
||||
...
|
||||
|
||||
def establish_colors(self, color, palette, saturation): # -> None:
|
||||
"""Get a list of colors for the main component of the plots."""
|
||||
...
|
||||
|
||||
@property
|
||||
def hue_offsets(self): # -> Any | NDArray[float64]:
|
||||
"""A list of center positions for plots when hue nesting is used."""
|
||||
...
|
||||
|
||||
@property
|
||||
def nested_width(self): # -> float:
|
||||
"""A float with the width of plot elements when hue nesting is used."""
|
||||
...
|
||||
|
||||
def annotate_axes(self, ax): # -> None:
|
||||
"""Add descriptive labels to an Axes object."""
|
||||
...
|
||||
|
||||
def add_legend_data(self, ax, color, label): # -> None:
|
||||
"""Add a dummy patch object so we can get legend data."""
|
||||
...
|
||||
|
||||
|
||||
|
||||
class _BoxPlotter(_CategoricalPlotter):
|
||||
def __init__(self, x, y, hue, data, order, hue_order, orient, color, palette, saturation, width, dodge, fliersize, linewidth) -> None:
|
||||
...
|
||||
|
||||
def draw_boxplot(self, ax, kws): # -> None:
|
||||
"""Use matplotlib to draw a boxplot on an Axes."""
|
||||
...
|
||||
|
||||
def restyle_boxplot(self, artist_dict, color, props): # -> None:
|
||||
"""Take a drawn matplotlib boxplot and make it look nice."""
|
||||
...
|
||||
|
||||
def plot(self, ax, boxplot_kws): # -> None:
|
||||
"""Make the plot."""
|
||||
...
|
||||
|
||||
|
||||
|
||||
class _ViolinPlotter(_CategoricalPlotter):
|
||||
def __init__(self, x, y, hue, data, order, hue_order, bw, cut, scale, scale_hue, gridsize, width, inner, split, dodge, orient, linewidth, color, palette, saturation) -> None:
|
||||
...
|
||||
|
||||
def estimate_densities(self, bw, cut, scale, scale_hue, gridsize): # -> None:
|
||||
"""Find the support and density for all of the data."""
|
||||
...
|
||||
|
||||
def fit_kde(self, x, bw): # -> tuple[gaussian_kde, Unknown]:
|
||||
"""Estimate a KDE for a vector of data with flexible bandwidth."""
|
||||
...
|
||||
|
||||
def kde_support(self, x, bw, cut, gridsize):
|
||||
"""Define a grid of support for the violin."""
|
||||
...
|
||||
|
||||
def scale_area(self, density, max_density, scale_hue): # -> None:
|
||||
"""Scale the relative area under the KDE curve.
|
||||
|
||||
This essentially preserves the "standard" KDE scaling, but the
|
||||
resulting maximum density will be 1 so that the curve can be
|
||||
properly multiplied by the violin width.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def scale_width(self, density): # -> None:
|
||||
"""Scale each density curve to the same height."""
|
||||
...
|
||||
|
||||
def scale_count(self, density, counts, scale_hue): # -> None:
|
||||
"""Scale each density curve by the number of observations."""
|
||||
...
|
||||
|
||||
@property
|
||||
def dwidth(self):
|
||||
...
|
||||
|
||||
def draw_violins(self, ax): # -> None:
|
||||
"""Draw the violins onto `ax`."""
|
||||
...
|
||||
|
||||
def draw_single_observation(self, ax, at_group, at_quant, density): # -> None:
|
||||
"""Draw a line to mark a single observation."""
|
||||
...
|
||||
|
||||
def draw_box_lines(self, ax, data, support, density, center): # -> None:
|
||||
"""Draw boxplot information at center of the density."""
|
||||
...
|
||||
|
||||
def draw_quartiles(self, ax, data, support, density, center, split=...): # -> None:
|
||||
"""Draw the quartiles as lines at width of density."""
|
||||
...
|
||||
|
||||
def draw_points(self, ax, data, center): # -> None:
|
||||
"""Draw individual observations as points at middle of the violin."""
|
||||
...
|
||||
|
||||
def draw_stick_lines(self, ax, data, support, density, center, split=...): # -> None:
|
||||
"""Draw individual observations as sticks at width of density."""
|
||||
...
|
||||
|
||||
def draw_to_density(self, ax, center, val, support, density, split, **kws): # -> None:
|
||||
"""Draw a line orthogonal to the value axis at width of density."""
|
||||
...
|
||||
|
||||
def plot(self, ax): # -> None:
|
||||
"""Make the violin plot."""
|
||||
...
|
||||
|
||||
|
||||
|
||||
class _CategoricalScatterPlotter(_CategoricalPlotter):
|
||||
default_palette = ...
|
||||
require_numeric = ...
|
||||
@property
|
||||
def point_colors(self): # -> list[Unknown]:
|
||||
"""Return an index into the palette for each scatter point."""
|
||||
...
|
||||
|
||||
def add_legend_data(self, ax): # -> None:
|
||||
"""Add empty scatterplot artists with labels for the legend."""
|
||||
...
|
||||
|
||||
|
||||
|
||||
class _StripPlotter(_CategoricalScatterPlotter):
|
||||
"""1-d scatterplot with categorical organization."""
|
||||
def __init__(self, x, y, hue, data, order, hue_order, jitter, dodge, orient, color, palette) -> None:
|
||||
"""Initialize the plotter."""
|
||||
...
|
||||
|
||||
def draw_stripplot(self, ax, kws): # -> None:
|
||||
"""Draw the points onto `ax`."""
|
||||
...
|
||||
|
||||
def plot(self, ax, kws): # -> None:
|
||||
"""Make the plot."""
|
||||
...
|
||||
|
||||
|
||||
|
||||
class _SwarmPlotter(_CategoricalScatterPlotter):
|
||||
def __init__(self, x, y, hue, data, order, hue_order, dodge, orient, color, palette) -> None:
|
||||
"""Initialize the plotter."""
|
||||
...
|
||||
|
||||
def could_overlap(self, xy_i, swarm, d): # -> NDArray[Unknown]:
|
||||
"""Return a list of all swarm points that could overlap with target.
|
||||
|
||||
Assumes that swarm is a sorted list of all points below xy_i.
|
||||
"""
|
||||
...
|
||||
|
||||
def position_candidates(self, xy_i, neighbors, d): # -> NDArray[Unknown]:
|
||||
"""Return a list of (x, y) coordinates that might be valid."""
|
||||
...
|
||||
|
||||
def first_non_overlapping_candidate(self, candidates, neighbors, d):
|
||||
"""Remove candidates from the list if they overlap with the swarm."""
|
||||
...
|
||||
|
||||
def beeswarm(self, orig_xy, d): # -> NDArray[Unknown]:
|
||||
"""Adjust x position of points to avoid overlaps."""
|
||||
...
|
||||
|
||||
def add_gutters(self, points, center, width):
|
||||
"""Stop points from extending beyond their territory."""
|
||||
...
|
||||
|
||||
def swarm_points(self, ax, points, center, width, s, **kws): # -> None:
|
||||
"""Find new positions on the categorical axis for each point."""
|
||||
...
|
||||
|
||||
def draw_swarmplot(self, ax, kws): # -> None:
|
||||
"""Plot the data."""
|
||||
...
|
||||
|
||||
def plot(self, ax, kws): # -> None:
|
||||
"""Make the full plot."""
|
||||
...
|
||||
|
||||
|
||||
|
||||
class _CategoricalStatPlotter(_CategoricalPlotter):
|
||||
require_numeric = ...
|
||||
@property
|
||||
def nested_width(self): # -> float:
|
||||
"""A float with the width of plot elements when hue nesting is used."""
|
||||
...
|
||||
|
||||
def estimate_statistic(self, estimator, ci, n_boot, seed): # -> None:
|
||||
...
|
||||
|
||||
def draw_confints(self, ax, at_group, confint, colors, errwidth=..., capsize=..., **kws): # -> None:
|
||||
...
|
||||
|
||||
|
||||
|
||||
class _BarPlotter(_CategoricalStatPlotter):
|
||||
"""Show point estimates and confidence intervals with bars."""
|
||||
def __init__(self, x, y, hue, data, order, hue_order, estimator, ci, n_boot, units, seed, orient, color, palette, saturation, errcolor, errwidth, capsize, dodge) -> None:
|
||||
"""Initialize the plotter."""
|
||||
...
|
||||
|
||||
def draw_bars(self, ax, kws): # -> None:
|
||||
"""Draw the bars onto `ax`."""
|
||||
...
|
||||
|
||||
def plot(self, ax, bar_kws): # -> None:
|
||||
"""Make the plot."""
|
||||
...
|
||||
|
||||
|
||||
|
||||
class _PointPlotter(_CategoricalStatPlotter):
|
||||
default_palette = ...
|
||||
def __init__(self, x, y, hue, data, order, hue_order, estimator, ci, n_boot, units, seed, markers, linestyles, dodge, join, scale, orient, color, palette, errwidth=..., capsize=...) -> None:
|
||||
"""Initialize the plotter."""
|
||||
...
|
||||
|
||||
@property
|
||||
def hue_offsets(self): # -> NDArray[float64]:
|
||||
"""Offsets relative to the center position for each hue level."""
|
||||
...
|
||||
|
||||
def draw_points(self, ax): # -> None:
|
||||
"""Draw the main data components of the plot."""
|
||||
...
|
||||
|
||||
def plot(self, ax): # -> None:
|
||||
"""Make the plot."""
|
||||
...
|
||||
|
||||
|
||||
|
||||
class _CountPlotter(_BarPlotter):
|
||||
require_numeric = ...
|
||||
|
||||
|
||||
class _LVPlotter(_CategoricalPlotter):
|
||||
def __init__(self, x, y, hue, data, order, hue_order, orient, color, palette, saturation, width, dodge, k_depth, linewidth, scale, outlier_prop, trust_alpha, showfliers=...) -> None:
|
||||
...
|
||||
|
||||
def draw_letter_value_plot(self, ax, kws): # -> None:
|
||||
"""Use matplotlib to draw a letter value plot on an Axes."""
|
||||
...
|
||||
|
||||
def plot(self, ax, boxplot_kws): # -> None:
|
||||
"""Make the plot."""
|
||||
...
|
||||
|
||||
|
||||
|
||||
_categorical_docs = ...
|
||||
@_deprecate_positional_args
|
||||
def boxplot(*, x=..., y=..., hue=..., data=..., order=..., hue_order=..., orient=..., color=..., palette=..., saturation=..., width=..., dodge=..., fliersize=..., linewidth=..., whis=..., ax=..., **kwargs): # -> Axes:
|
||||
...
|
||||
|
||||
@_deprecate_positional_args
|
||||
def violinplot(*, x=..., y=..., hue=..., data=..., order=..., hue_order=..., bw=..., cut=..., scale=..., scale_hue=..., gridsize=..., width=..., inner=..., split=..., dodge=..., orient=..., linewidth=..., color=..., palette=..., saturation=..., ax=..., **kwargs): # -> Axes:
|
||||
...
|
||||
|
||||
@_deprecate_positional_args
|
||||
def boxenplot(*, x=..., y=..., hue=..., data=..., order=..., hue_order=..., orient=..., color=..., palette=..., saturation=..., width=..., dodge=..., k_depth=..., linewidth=..., scale=..., outlier_prop=..., trust_alpha=..., showfliers=..., ax=..., **kwargs): # -> Axes:
|
||||
...
|
||||
|
||||
@_deprecate_positional_args
|
||||
def stripplot(*, x=..., y=..., hue=..., data=..., order=..., hue_order=..., jitter=..., dodge=..., orient=..., color=..., palette=..., size=..., edgecolor=..., linewidth=..., ax=..., **kwargs): # -> Axes:
|
||||
...
|
||||
|
||||
@_deprecate_positional_args
|
||||
def swarmplot(*, x=..., y=..., hue=..., data=..., order=..., hue_order=..., dodge=..., orient=..., color=..., palette=..., size=..., edgecolor=..., linewidth=..., ax=..., **kwargs): # -> Axes:
|
||||
...
|
||||
|
||||
@_deprecate_positional_args
|
||||
def barplot(*, x=..., y=..., hue=..., data=..., order=..., hue_order=..., estimator=..., ci=..., n_boot=..., units=..., seed=..., orient=..., color=..., palette=..., saturation=..., errcolor=..., errwidth=..., capsize=..., dodge=..., ax=..., **kwargs): # -> Axes:
|
||||
...
|
||||
|
||||
@_deprecate_positional_args
|
||||
def pointplot(*, x=..., y=..., hue=..., data=..., order=..., hue_order=..., estimator=..., ci=..., n_boot=..., units=..., seed=..., markers=..., linestyles=..., dodge=..., join=..., scale=..., orient=..., color=..., palette=..., errwidth=..., capsize=..., ax=..., **kwargs): # -> Axes:
|
||||
...
|
||||
|
||||
@_deprecate_positional_args
|
||||
def countplot(*, x=..., y=..., hue=..., data=..., order=..., hue_order=..., orient=..., color=..., palette=..., saturation=..., dodge=..., ax=..., **kwargs): # -> Axes:
|
||||
...
|
||||
|
||||
def factorplot(*args, **kwargs):
|
||||
"""Deprecated; please use `catplot` instead."""
|
||||
...
|
||||
|
||||
@_deprecate_positional_args
|
||||
def catplot(*, x=..., y=..., hue=..., data=..., row=..., col=..., col_wrap=..., estimator=..., ci=..., n_boot=..., units=..., seed=..., order=..., hue_order=..., row_order=..., col_order=..., kind=..., height=..., aspect=..., orient=..., color=..., palette=..., legend=..., legend_out=..., sharex=..., sharey=..., margin_titles=..., facet_kws=..., **kwargs):
|
||||
...
|
||||
|
11
typings/seaborn/cm.pyi
Normal file
11
typings/seaborn/cm.pyi
Normal file
|
@ -0,0 +1,11 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
_rocket_lut = ...
|
||||
_mako_lut = ...
|
||||
_vlag_lut = ...
|
||||
_icefire_lut = ...
|
||||
_flare_lut = ...
|
||||
_crest_lut = ...
|
||||
_lut_dict = ...
|
7
typings/seaborn/colors/__init__.pyi
Normal file
7
typings/seaborn/colors/__init__.pyi
Normal file
|
@ -0,0 +1,7 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from .xkcd_rgb import xkcd_rgb
|
||||
from .crayons import crayons
|
||||
|
5
typings/seaborn/colors/crayons.pyi
Normal file
5
typings/seaborn/colors/crayons.pyi
Normal file
|
@ -0,0 +1,5 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
crayons = ...
|
5
typings/seaborn/colors/xkcd_rgb.pyi
Normal file
5
typings/seaborn/colors/xkcd_rgb.pyi
Normal file
|
@ -0,0 +1,5 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
xkcd_rgb = ...
|
98
typings/seaborn/conftest.pyi
Normal file
98
typings/seaborn/conftest.pyi
Normal file
|
@ -0,0 +1,98 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import pytest
|
||||
|
||||
def has_verdana(): # -> bool:
|
||||
"""Helper to verify if Verdana font is present"""
|
||||
...
|
||||
|
||||
@pytest.fixture(scope="session", autouse=True)
|
||||
def remove_pandas_unit_conversion(): # -> None:
|
||||
...
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def close_figs(): # -> Generator[None, Any, None]:
|
||||
...
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def random_seed(): # -> None:
|
||||
...
|
||||
|
||||
@pytest.fixture()
|
||||
def rng(): # -> RandomState:
|
||||
...
|
||||
|
||||
@pytest.fixture
|
||||
def wide_df(rng): # -> DataFrame:
|
||||
...
|
||||
|
||||
@pytest.fixture
|
||||
def wide_array(wide_df): # -> NDArray[Unknown]:
|
||||
...
|
||||
|
||||
@pytest.fixture
|
||||
def flat_series(rng): # -> Series:
|
||||
...
|
||||
|
||||
@pytest.fixture
|
||||
def flat_array(flat_series): # -> NDArray[Unknown]:
|
||||
...
|
||||
|
||||
@pytest.fixture
|
||||
def flat_list(flat_series):
|
||||
...
|
||||
|
||||
@pytest.fixture(params=["series", "array", "list"])
|
||||
def flat_data(rng, request): # -> Series | ndarray[Unknown, Unknown] | NDArray[Unknown] | list[Unknown] | Any:
|
||||
...
|
||||
|
||||
@pytest.fixture
|
||||
def wide_list_of_series(rng): # -> list[Series]:
|
||||
...
|
||||
|
||||
@pytest.fixture
|
||||
def wide_list_of_arrays(wide_list_of_series): # -> list[NDArray[Unknown]]:
|
||||
...
|
||||
|
||||
@pytest.fixture
|
||||
def wide_list_of_lists(wide_list_of_series): # -> list[Unknown]:
|
||||
...
|
||||
|
||||
@pytest.fixture
|
||||
def wide_dict_of_series(wide_list_of_series): # -> dict[Unknown, Unknown]:
|
||||
...
|
||||
|
||||
@pytest.fixture
|
||||
def wide_dict_of_arrays(wide_list_of_series): # -> dict[Unknown, NDArray[Unknown]]:
|
||||
...
|
||||
|
||||
@pytest.fixture
|
||||
def wide_dict_of_lists(wide_list_of_series): # -> dict[Unknown, Unknown]:
|
||||
...
|
||||
|
||||
@pytest.fixture
|
||||
def long_df(rng): # -> DataFrame:
|
||||
...
|
||||
|
||||
@pytest.fixture
|
||||
def long_dict(long_df):
|
||||
...
|
||||
|
||||
@pytest.fixture
|
||||
def repeated_df(rng): # -> DataFrame:
|
||||
...
|
||||
|
||||
@pytest.fixture
|
||||
def missing_df(rng, long_df):
|
||||
...
|
||||
|
||||
@pytest.fixture
|
||||
def object_df(rng, long_df):
|
||||
...
|
||||
|
||||
@pytest.fixture
|
||||
def null_series(flat_series): # -> Series:
|
||||
...
|
||||
|
209
typings/seaborn/distributions.pyi
Normal file
209
typings/seaborn/distributions.pyi
Normal file
|
@ -0,0 +1,209 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from ._core import VectorPlotter
|
||||
from ._decorators import _deprecate_positional_args
|
||||
|
||||
"""Plotting functions for visualizing distributions."""
|
||||
__all__ = ["displot", "histplot", "kdeplot", "ecdfplot", "rugplot", "distplot"]
|
||||
_dist_params = ...
|
||||
_param_docs = ...
|
||||
class _DistributionPlotter(VectorPlotter):
|
||||
semantics = ...
|
||||
wide_structure = ...
|
||||
flat_structure = ...
|
||||
def __init__(self, data=..., variables=...) -> None:
|
||||
...
|
||||
|
||||
@property
|
||||
def univariate(self): # -> bool:
|
||||
"""Return True if only x or y are used."""
|
||||
...
|
||||
|
||||
@property
|
||||
def data_variable(self): # -> str:
|
||||
"""Return the variable with data for univariate plots."""
|
||||
...
|
||||
|
||||
@property
|
||||
def has_xy_data(self): # -> bool:
|
||||
"""Return True at least one of x or y is defined."""
|
||||
...
|
||||
|
||||
def plot_univariate_histogram(self, multiple, element, fill, common_norm, common_bins, shrink, kde, kde_kws, color, legend, line_kws, estimate_kws, **plot_kws):
|
||||
...
|
||||
|
||||
def plot_bivariate_histogram(self, common_bins, common_norm, thresh, pthresh, pmax, color, legend, cbar, cbar_ax, cbar_kws, estimate_kws, **plot_kws):
|
||||
...
|
||||
|
||||
def plot_univariate_density(self, multiple, common_norm, common_grid, fill, legend, estimate_kws, **plot_kws):
|
||||
...
|
||||
|
||||
def plot_bivariate_density(self, common_norm, fill, levels, thresh, color, legend, cbar, cbar_ax, cbar_kws, estimate_kws, **contour_kws):
|
||||
...
|
||||
|
||||
def plot_univariate_ecdf(self, estimate_kws, legend, **plot_kws): # -> None:
|
||||
...
|
||||
|
||||
def plot_rug(self, height, expand_margins, legend, **kws): # -> None:
|
||||
...
|
||||
|
||||
|
||||
|
||||
class _DistributionFacetPlotter(_DistributionPlotter):
|
||||
semantics = ...
|
||||
|
||||
|
||||
def histplot(data=..., *, x=..., y=..., hue=..., weights=..., stat=..., bins=..., binwidth=..., binrange=..., discrete=..., cumulative=..., common_bins=..., common_norm=..., multiple=..., element=..., fill=..., shrink=..., kde=..., kde_kws=..., line_kws=..., thresh=..., pthresh=..., pmax=..., cbar=..., cbar_ax=..., cbar_kws=..., palette=..., hue_order=..., hue_norm=..., color=..., log_scale=..., legend=..., ax=..., **kwargs): # -> Axes:
|
||||
...
|
||||
|
||||
@_deprecate_positional_args
|
||||
def kdeplot(x=..., *, y=..., shade=..., vertical=..., kernel=..., bw=..., gridsize=..., cut=..., clip=..., legend=..., cumulative=..., shade_lowest=..., cbar=..., cbar_ax=..., cbar_kws=..., ax=..., weights=..., hue=..., palette=..., hue_order=..., hue_norm=..., multiple=..., common_norm=..., common_grid=..., levels=..., thresh=..., bw_method=..., bw_adjust=..., log_scale=..., color=..., fill=..., data=..., data2=..., **kwargs): # -> Axes:
|
||||
...
|
||||
|
||||
def ecdfplot(data=..., *, x=..., y=..., hue=..., weights=..., stat=..., complementary=..., palette=..., hue_order=..., hue_norm=..., log_scale=..., legend=..., ax=..., **kwargs): # -> Axes:
|
||||
...
|
||||
|
||||
@_deprecate_positional_args
|
||||
def rugplot(x=..., *, height=..., axis=..., ax=..., data=..., y=..., hue=..., palette=..., hue_order=..., hue_norm=..., expand_margins=..., legend=..., a=..., **kwargs): # -> Axes:
|
||||
...
|
||||
|
||||
def displot(data=..., *, x=..., y=..., hue=..., row=..., col=..., weights=..., kind=..., rug=..., rug_kws=..., log_scale=..., legend=..., palette=..., hue_order=..., hue_norm=..., color=..., col_wrap=..., row_order=..., col_order=..., height=..., aspect=..., facet_kws=..., **kwargs): # -> FacetGrid:
|
||||
...
|
||||
|
||||
def distplot(a=..., bins=..., hist=..., kde=..., rug=..., fit=..., hist_kws=..., kde_kws=..., rug_kws=..., fit_kws=..., color=..., vertical=..., norm_hist=..., axlabel=..., label=..., ax=..., x=...):
|
||||
"""DEPRECATED: Flexibly plot a univariate distribution of observations.
|
||||
|
||||
.. warning::
|
||||
This function is deprecated and will be removed in a future version.
|
||||
Please adapt your code to use one of two new functions:
|
||||
|
||||
- :func:`displot`, a figure-level function with a similar flexibility
|
||||
over the kind of plot to draw
|
||||
- :func:`histplot`, an axes-level function for plotting histograms,
|
||||
including with kernel density smoothing
|
||||
|
||||
This function combines the matplotlib ``hist`` function (with automatic
|
||||
calculation of a good default bin size) with the seaborn :func:`kdeplot`
|
||||
and :func:`rugplot` functions. It can also fit ``scipy.stats``
|
||||
distributions and plot the estimated PDF over the data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : Series, 1d-array, or list.
|
||||
Observed data. If this is a Series object with a ``name`` attribute,
|
||||
the name will be used to label the data axis.
|
||||
bins : argument for matplotlib hist(), or None, optional
|
||||
Specification of hist bins. If unspecified, as reference rule is used
|
||||
that tries to find a useful default.
|
||||
hist : bool, optional
|
||||
Whether to plot a (normed) histogram.
|
||||
kde : bool, optional
|
||||
Whether to plot a gaussian kernel density estimate.
|
||||
rug : bool, optional
|
||||
Whether to draw a rugplot on the support axis.
|
||||
fit : random variable object, optional
|
||||
An object with `fit` method, returning a tuple that can be passed to a
|
||||
`pdf` method a positional arguments following a grid of values to
|
||||
evaluate the pdf on.
|
||||
hist_kws : dict, optional
|
||||
Keyword arguments for :meth:`matplotlib.axes.Axes.hist`.
|
||||
kde_kws : dict, optional
|
||||
Keyword arguments for :func:`kdeplot`.
|
||||
rug_kws : dict, optional
|
||||
Keyword arguments for :func:`rugplot`.
|
||||
color : matplotlib color, optional
|
||||
Color to plot everything but the fitted curve in.
|
||||
vertical : bool, optional
|
||||
If True, observed values are on y-axis.
|
||||
norm_hist : bool, optional
|
||||
If True, the histogram height shows a density rather than a count.
|
||||
This is implied if a KDE or fitted density is plotted.
|
||||
axlabel : string, False, or None, optional
|
||||
Name for the support axis label. If None, will try to get it
|
||||
from a.name if False, do not set a label.
|
||||
label : string, optional
|
||||
Legend label for the relevant component of the plot.
|
||||
ax : matplotlib axis, optional
|
||||
If provided, plot on this axis.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ax : matplotlib Axes
|
||||
Returns the Axes object with the plot for further tweaking.
|
||||
|
||||
See Also
|
||||
--------
|
||||
kdeplot : Show a univariate or bivariate distribution with a kernel
|
||||
density estimate.
|
||||
rugplot : Draw small vertical lines to show each observation in a
|
||||
distribution.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
Show a default plot with a kernel density estimate and histogram with bin
|
||||
size determined automatically with a reference rule:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> import seaborn as sns, numpy as np
|
||||
>>> sns.set_theme(); np.random.seed(0)
|
||||
>>> x = np.random.randn(100)
|
||||
>>> ax = sns.distplot(x)
|
||||
|
||||
Use Pandas objects to get an informative axis label:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> import pandas as pd
|
||||
>>> x = pd.Series(x, name="x variable")
|
||||
>>> ax = sns.distplot(x)
|
||||
|
||||
Plot the distribution with a kernel density estimate and rug plot:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> ax = sns.distplot(x, rug=True, hist=False)
|
||||
|
||||
Plot the distribution with a histogram and maximum likelihood gaussian
|
||||
distribution fit:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> from scipy.stats import norm
|
||||
>>> ax = sns.distplot(x, fit=norm, kde=False)
|
||||
|
||||
Plot the distribution on the vertical axis:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> ax = sns.distplot(x, vertical=True)
|
||||
|
||||
Change the color of all the plot elements:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> sns.set_color_codes()
|
||||
>>> ax = sns.distplot(x, color="y")
|
||||
|
||||
Pass specific parameters to the underlying plot functions:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> ax = sns.distplot(x, rug=True, rug_kws={"color": "g"},
|
||||
... kde_kws={"color": "k", "lw": 3, "label": "KDE"},
|
||||
... hist_kws={"histtype": "step", "linewidth": 3,
|
||||
... "alpha": 1, "color": "g"})
|
||||
|
||||
"""
|
||||
...
|
||||
|
4
typings/seaborn/external/__init__.pyi
vendored
Normal file
4
typings/seaborn/external/__init__.pyi
vendored
Normal file
|
@ -0,0 +1,4 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
165
typings/seaborn/external/docscrape.pyi
vendored
Normal file
165
typings/seaborn/external/docscrape.pyi
vendored
Normal file
|
@ -0,0 +1,165 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from collections.abc import Mapping
|
||||
|
||||
"""Extract reference documentation from the NumPy source tree.
|
||||
|
||||
Copyright (C) 2008 Stefan van der Walt <stefan@mentat.za.net>, Pauli Virtanen <pav@iki.fi>
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
2. Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in
|
||||
the documentation and/or other materials provided with the
|
||||
distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
|
||||
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
||||
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
"""
|
||||
def strip_blank_lines(l):
|
||||
"Remove leading and trailing blank lines from a list of lines"
|
||||
...
|
||||
|
||||
class Reader:
|
||||
"""A line-based string reader.
|
||||
|
||||
"""
|
||||
def __init__(self, data) -> None:
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
data : str
|
||||
String with lines separated by '\n'.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def __getitem__(self, n):
|
||||
...
|
||||
|
||||
def reset(self): # -> None:
|
||||
...
|
||||
|
||||
def read(self): # -> Literal['']:
|
||||
...
|
||||
|
||||
def seek_next_non_empty_line(self): # -> None:
|
||||
...
|
||||
|
||||
def eof(self): # -> bool:
|
||||
...
|
||||
|
||||
def read_to_condition(self, condition_func): # -> list[Unknown]:
|
||||
...
|
||||
|
||||
def read_to_next_empty_line(self): # -> list[Unknown]:
|
||||
...
|
||||
|
||||
def read_to_next_unindented_line(self): # -> list[Unknown]:
|
||||
...
|
||||
|
||||
def peek(self, n=...): # -> Literal['']:
|
||||
...
|
||||
|
||||
def is_empty(self): # -> bool:
|
||||
...
|
||||
|
||||
|
||||
|
||||
class ParseError(Exception):
|
||||
def __str__(self) -> str:
|
||||
...
|
||||
|
||||
|
||||
|
||||
Parameter = ...
|
||||
class NumpyDocString(Mapping):
|
||||
"""Parses a numpydoc string to an abstract representation
|
||||
|
||||
Instances define a mapping from section title to structured data.
|
||||
|
||||
"""
|
||||
sections = ...
|
||||
def __init__(self, docstring, config=...) -> None:
|
||||
...
|
||||
|
||||
def __getitem__(self, key):
|
||||
...
|
||||
|
||||
def __setitem__(self, key, val): # -> None:
|
||||
...
|
||||
|
||||
def __iter__(self): # -> Iterator[str]:
|
||||
...
|
||||
|
||||
def __len__(self): # -> int:
|
||||
...
|
||||
|
||||
_role = ...
|
||||
_funcbacktick = ...
|
||||
_funcplain = ...
|
||||
_funcname = ...
|
||||
_funcnamenext = ...
|
||||
_funcnamenext = ...
|
||||
_description = ...
|
||||
_func_rgx = ...
|
||||
_line_rgx = ...
|
||||
empty_description = ...
|
||||
def __str__(self, func_role=...) -> str:
|
||||
...
|
||||
|
||||
|
||||
|
||||
def indent(str, indent=...): # -> LiteralString:
|
||||
...
|
||||
|
||||
def dedent_lines(lines): # -> list[str]:
|
||||
"""Deindent a list of lines maximally"""
|
||||
...
|
||||
|
||||
def header(text, style=...):
|
||||
...
|
||||
|
||||
class FunctionDoc(NumpyDocString):
|
||||
def __init__(self, func, role=..., doc=..., config=...) -> None:
|
||||
...
|
||||
|
||||
def get_func(self): # -> tuple[Any | Overload[(__o: object, /) -> None, (__name: str, __bases: tuple[type, ...], __dict: dict[str, Any], **kwds: Any) -> None] | Unknown, Any | str]:
|
||||
...
|
||||
|
||||
def __str__(self) -> str:
|
||||
...
|
||||
|
||||
|
||||
|
||||
class ClassDoc(NumpyDocString):
|
||||
extra_public_methods = ...
|
||||
def __init__(self, cls, doc=..., modulename=..., func_doc=..., config=...) -> None:
|
||||
...
|
||||
|
||||
@property
|
||||
def methods(self): # -> list[Unknown] | list[str]:
|
||||
...
|
||||
|
||||
@property
|
||||
def properties(self): # -> list[Unknown] | list[str]:
|
||||
...
|
||||
|
||||
|
||||
|
104
typings/seaborn/external/husl.pyi
vendored
Normal file
104
typings/seaborn/external/husl.pyi
vendored
Normal file
|
@ -0,0 +1,104 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
__version__ = ...
|
||||
m = ...
|
||||
m_inv = ...
|
||||
refX = ...
|
||||
refY = ...
|
||||
refZ = ...
|
||||
refU = ...
|
||||
refV = ...
|
||||
lab_e = ...
|
||||
lab_k = ...
|
||||
def husl_to_rgb(h, s, l): # -> list[Unknown | float]:
|
||||
...
|
||||
|
||||
def husl_to_hex(h, s, l): # -> LiteralString:
|
||||
...
|
||||
|
||||
def rgb_to_husl(r, g, b): # -> list[Unknown]:
|
||||
...
|
||||
|
||||
def hex_to_husl(hex): # -> list[Unknown]:
|
||||
...
|
||||
|
||||
def huslp_to_rgb(h, s, l): # -> list[Unknown | float]:
|
||||
...
|
||||
|
||||
def huslp_to_hex(h, s, l): # -> LiteralString:
|
||||
...
|
||||
|
||||
def rgb_to_huslp(r, g, b): # -> list[Unknown]:
|
||||
...
|
||||
|
||||
def hex_to_huslp(hex): # -> list[Unknown]:
|
||||
...
|
||||
|
||||
def lch_to_rgb(l, c, h): # -> list[Unknown | float]:
|
||||
...
|
||||
|
||||
def rgb_to_lch(r, g, b): # -> list[Unknown]:
|
||||
...
|
||||
|
||||
def max_chroma(L, H): # -> float:
|
||||
...
|
||||
|
||||
def max_chroma_pastel(L): # -> float:
|
||||
...
|
||||
|
||||
def dot_product(a, b): # -> int:
|
||||
...
|
||||
|
||||
def f(t): # -> float:
|
||||
...
|
||||
|
||||
def f_inv(t): # -> float:
|
||||
...
|
||||
|
||||
def from_linear(c): # -> float:
|
||||
...
|
||||
|
||||
def to_linear(c): # -> float:
|
||||
...
|
||||
|
||||
def rgb_prepare(triple): # -> list[Unknown]:
|
||||
...
|
||||
|
||||
def hex_to_rgb(hex): # -> list[float]:
|
||||
...
|
||||
|
||||
def rgb_to_hex(triple): # -> LiteralString:
|
||||
...
|
||||
|
||||
def xyz_to_rgb(triple): # -> list[Unknown | float]:
|
||||
...
|
||||
|
||||
def rgb_to_xyz(triple): # -> list[int]:
|
||||
...
|
||||
|
||||
def xyz_to_luv(triple): # -> list[float] | list[Unknown]:
|
||||
...
|
||||
|
||||
def luv_to_xyz(triple): # -> list[float] | list[Unknown]:
|
||||
...
|
||||
|
||||
def luv_to_lch(triple): # -> list[Unknown]:
|
||||
...
|
||||
|
||||
def lch_to_luv(triple): # -> list[Unknown]:
|
||||
...
|
||||
|
||||
def husl_to_lch(triple): # -> list[Unknown]:
|
||||
...
|
||||
|
||||
def lch_to_husl(triple): # -> list[Unknown]:
|
||||
...
|
||||
|
||||
def huslp_to_lch(triple): # -> list[Unknown]:
|
||||
...
|
||||
|
||||
def lch_to_huslp(triple): # -> list[Unknown]:
|
||||
...
|
||||
|
557
typings/seaborn/matrix.pyi
Normal file
557
typings/seaborn/matrix.pyi
Normal file
|
@ -0,0 +1,557 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from .axisgrid import Grid
|
||||
from ._decorators import _deprecate_positional_args
|
||||
|
||||
"""Functions to visualize matrices of data."""
|
||||
__all__ = ["heatmap", "clustermap"]
|
||||
class _HeatMapper:
|
||||
"""Draw a heatmap plot of a matrix with nice labels and colormaps."""
|
||||
def __init__(self, data, vmin, vmax, cmap, center, robust, annot, fmt, annot_kws, cbar, cbar_kws, xticklabels=..., yticklabels=..., mask=...) -> None:
|
||||
"""Initialize the plotting object."""
|
||||
...
|
||||
|
||||
def plot(self, ax, cax, kws): # -> None:
|
||||
"""Draw the heatmap on the provided Axes."""
|
||||
...
|
||||
|
||||
|
||||
|
||||
@_deprecate_positional_args
|
||||
def heatmap(data, *, vmin=..., vmax=..., cmap=..., center=..., robust=..., annot=..., fmt=..., annot_kws=..., linewidths=..., linecolor=..., cbar=..., cbar_kws=..., cbar_ax=..., square=..., xticklabels=..., yticklabels=..., mask=..., ax=..., **kwargs): # -> Axes:
|
||||
"""Plot rectangular data as a color-encoded matrix.
|
||||
|
||||
This is an Axes-level function and will draw the heatmap into the
|
||||
currently-active Axes if none is provided to the ``ax`` argument. Part of
|
||||
this Axes space will be taken and used to plot a colormap, unless ``cbar``
|
||||
is False or a separate Axes is provided to ``cbar_ax``.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : rectangular dataset
|
||||
2D dataset that can be coerced into an ndarray. If a Pandas DataFrame
|
||||
is provided, the index/column information will be used to label the
|
||||
columns and rows.
|
||||
vmin, vmax : floats, optional
|
||||
Values to anchor the colormap, otherwise they are inferred from the
|
||||
data and other keyword arguments.
|
||||
cmap : matplotlib colormap name or object, or list of colors, optional
|
||||
The mapping from data values to color space. If not provided, the
|
||||
default will depend on whether ``center`` is set.
|
||||
center : float, optional
|
||||
The value at which to center the colormap when plotting divergant data.
|
||||
Using this parameter will change the default ``cmap`` if none is
|
||||
specified.
|
||||
robust : bool, optional
|
||||
If True and ``vmin`` or ``vmax`` are absent, the colormap range is
|
||||
computed with robust quantiles instead of the extreme values.
|
||||
annot : bool or rectangular dataset, optional
|
||||
If True, write the data value in each cell. If an array-like with the
|
||||
same shape as ``data``, then use this to annotate the heatmap instead
|
||||
of the data. Note that DataFrames will match on position, not index.
|
||||
fmt : str, optional
|
||||
String formatting code to use when adding annotations.
|
||||
annot_kws : dict of key, value mappings, optional
|
||||
Keyword arguments for :meth:`matplotlib.axes.Axes.text` when ``annot``
|
||||
is True.
|
||||
linewidths : float, optional
|
||||
Width of the lines that will divide each cell.
|
||||
linecolor : color, optional
|
||||
Color of the lines that will divide each cell.
|
||||
cbar : bool, optional
|
||||
Whether to draw a colorbar.
|
||||
cbar_kws : dict of key, value mappings, optional
|
||||
Keyword arguments for :meth:`matplotlib.figure.Figure.colorbar`.
|
||||
cbar_ax : matplotlib Axes, optional
|
||||
Axes in which to draw the colorbar, otherwise take space from the
|
||||
main Axes.
|
||||
square : bool, optional
|
||||
If True, set the Axes aspect to "equal" so each cell will be
|
||||
square-shaped.
|
||||
xticklabels, yticklabels : "auto", bool, list-like, or int, optional
|
||||
If True, plot the column names of the dataframe. If False, don't plot
|
||||
the column names. If list-like, plot these alternate labels as the
|
||||
xticklabels. If an integer, use the column names but plot only every
|
||||
n label. If "auto", try to densely plot non-overlapping labels.
|
||||
mask : bool array or DataFrame, optional
|
||||
If passed, data will not be shown in cells where ``mask`` is True.
|
||||
Cells with missing values are automatically masked.
|
||||
ax : matplotlib Axes, optional
|
||||
Axes in which to draw the plot, otherwise use the currently-active
|
||||
Axes.
|
||||
kwargs : other keyword arguments
|
||||
All other keyword arguments are passed to
|
||||
:meth:`matplotlib.axes.Axes.pcolormesh`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ax : matplotlib Axes
|
||||
Axes object with the heatmap.
|
||||
|
||||
See Also
|
||||
--------
|
||||
clustermap : Plot a matrix using hierachical clustering to arrange the
|
||||
rows and columns.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
Plot a heatmap for a numpy array:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> import numpy as np; np.random.seed(0)
|
||||
>>> import seaborn as sns; sns.set_theme()
|
||||
>>> uniform_data = np.random.rand(10, 12)
|
||||
>>> ax = sns.heatmap(uniform_data)
|
||||
|
||||
Change the limits of the colormap:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> ax = sns.heatmap(uniform_data, vmin=0, vmax=1)
|
||||
|
||||
Plot a heatmap for data centered on 0 with a diverging colormap:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> normal_data = np.random.randn(10, 12)
|
||||
>>> ax = sns.heatmap(normal_data, center=0)
|
||||
|
||||
Plot a dataframe with meaningful row and column labels:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> flights = sns.load_dataset("flights")
|
||||
>>> flights = flights.pivot("month", "year", "passengers")
|
||||
>>> ax = sns.heatmap(flights)
|
||||
|
||||
Annotate each cell with the numeric value using integer formatting:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> ax = sns.heatmap(flights, annot=True, fmt="d")
|
||||
|
||||
Add lines between each cell:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> ax = sns.heatmap(flights, linewidths=.5)
|
||||
|
||||
Use a different colormap:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> ax = sns.heatmap(flights, cmap="YlGnBu")
|
||||
|
||||
Center the colormap at a specific value:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> ax = sns.heatmap(flights, center=flights.loc["Jan", 1955])
|
||||
|
||||
Plot every other column label and don't plot row labels:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> data = np.random.randn(50, 20)
|
||||
>>> ax = sns.heatmap(data, xticklabels=2, yticklabels=False)
|
||||
|
||||
Don't draw a colorbar:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> ax = sns.heatmap(flights, cbar=False)
|
||||
|
||||
Use different axes for the colorbar:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> grid_kws = {"height_ratios": (.9, .05), "hspace": .3}
|
||||
>>> f, (ax, cbar_ax) = plt.subplots(2, gridspec_kw=grid_kws)
|
||||
>>> ax = sns.heatmap(flights, ax=ax,
|
||||
... cbar_ax=cbar_ax,
|
||||
... cbar_kws={"orientation": "horizontal"})
|
||||
|
||||
Use a mask to plot only part of a matrix
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> corr = np.corrcoef(np.random.randn(10, 200))
|
||||
>>> mask = np.zeros_like(corr)
|
||||
>>> mask[np.triu_indices_from(mask)] = True
|
||||
>>> with sns.axes_style("white"):
|
||||
... f, ax = plt.subplots(figsize=(7, 5))
|
||||
... ax = sns.heatmap(corr, mask=mask, vmax=.3, square=True)
|
||||
"""
|
||||
...
|
||||
|
||||
class _DendrogramPlotter:
|
||||
"""Object for drawing tree of similarities between data rows/columns"""
|
||||
def __init__(self, data, linkage, metric, method, axis, label, rotate) -> None:
|
||||
"""Plot a dendrogram of the relationships between the columns of data
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : pandas.DataFrame
|
||||
Rectangular data
|
||||
"""
|
||||
...
|
||||
|
||||
@property
|
||||
def calculated_linkage(self):
|
||||
...
|
||||
|
||||
def calculate_dendrogram(self): # -> dict[str, Unknown]:
|
||||
"""Calculates a dendrogram based on the linkage matrix
|
||||
|
||||
Made a separate function, not a property because don't want to
|
||||
recalculate the dendrogram every time it is accessed.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dendrogram : dict
|
||||
Dendrogram dictionary as returned by scipy.cluster.hierarchy
|
||||
.dendrogram. The important key-value pairing is
|
||||
"reordered_ind" which indicates the re-ordering of the matrix
|
||||
"""
|
||||
...
|
||||
|
||||
@property
|
||||
def reordered_ind(self):
|
||||
"""Indices of the matrix, reordered by the dendrogram"""
|
||||
...
|
||||
|
||||
def plot(self, ax, tree_kws): # -> Self@_DendrogramPlotter:
|
||||
"""Plots a dendrogram of the similarities between data on the axes
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ax : matplotlib.axes.Axes
|
||||
Axes object upon which the dendrogram is plotted
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
|
||||
|
||||
@_deprecate_positional_args
|
||||
def dendrogram(data, *, linkage=..., axis=..., label=..., metric=..., method=..., rotate=..., tree_kws=..., ax=...): # -> _DendrogramPlotter:
|
||||
"""Draw a tree diagram of relationships within a matrix
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : pandas.DataFrame
|
||||
Rectangular data
|
||||
linkage : numpy.array, optional
|
||||
Linkage matrix
|
||||
axis : int, optional
|
||||
Which axis to use to calculate linkage. 0 is rows, 1 is columns.
|
||||
label : bool, optional
|
||||
If True, label the dendrogram at leaves with column or row names
|
||||
metric : str, optional
|
||||
Distance metric. Anything valid for scipy.spatial.distance.pdist
|
||||
method : str, optional
|
||||
Linkage method to use. Anything valid for
|
||||
scipy.cluster.hierarchy.linkage
|
||||
rotate : bool, optional
|
||||
When plotting the matrix, whether to rotate it 90 degrees
|
||||
counter-clockwise, so the leaves face right
|
||||
tree_kws : dict, optional
|
||||
Keyword arguments for the ``matplotlib.collections.LineCollection``
|
||||
that is used for plotting the lines of the dendrogram tree.
|
||||
ax : matplotlib axis, optional
|
||||
Axis to plot on, otherwise uses current axis
|
||||
|
||||
Returns
|
||||
-------
|
||||
dendrogramplotter : _DendrogramPlotter
|
||||
A Dendrogram plotter object.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Access the reordered dendrogram indices with
|
||||
dendrogramplotter.reordered_ind
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
class ClusterGrid(Grid):
|
||||
def __init__(self, data, pivot_kws=..., z_score=..., standard_scale=..., figsize=..., row_colors=..., col_colors=..., mask=..., dendrogram_ratio=..., colors_ratio=..., cbar_pos=...) -> None:
|
||||
"""Grid object for organizing clustered heatmap input on to axes"""
|
||||
...
|
||||
|
||||
def format_data(self, data, pivot_kws, z_score=..., standard_scale=...):
|
||||
"""Extract variables from data or use directly."""
|
||||
...
|
||||
|
||||
@staticmethod
|
||||
def z_score(data2d, axis=...):
|
||||
"""Standarize the mean and variance of the data axis
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data2d : pandas.DataFrame
|
||||
Data to normalize
|
||||
axis : int
|
||||
Which axis to normalize across. If 0, normalize across rows, if 1,
|
||||
normalize across columns.
|
||||
|
||||
Returns
|
||||
-------
|
||||
normalized : pandas.DataFrame
|
||||
Noramlized data with a mean of 0 and variance of 1 across the
|
||||
specified axis.
|
||||
"""
|
||||
...
|
||||
|
||||
@staticmethod
|
||||
def standard_scale(data2d, axis=...):
|
||||
"""Divide the data by the difference between the max and min
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data2d : pandas.DataFrame
|
||||
Data to normalize
|
||||
axis : int
|
||||
Which axis to normalize across. If 0, normalize across rows, if 1,
|
||||
normalize across columns.
|
||||
vmin : int
|
||||
If 0, then subtract the minimum of the data before dividing by
|
||||
the range.
|
||||
|
||||
Returns
|
||||
-------
|
||||
standardized : pandas.DataFrame
|
||||
Noramlized data with a mean of 0 and variance of 1 across the
|
||||
specified axis.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def dim_ratios(self, colors, dendrogram_ratio, colors_ratio): # -> list[Unknown]:
|
||||
"""Get the proportions of the figure taken up by each axes."""
|
||||
...
|
||||
|
||||
@staticmethod
|
||||
def color_list_to_matrix_and_cmap(colors, ind, axis=...): # -> tuple[ndarray[Any, dtype[Any]], Unknown]:
|
||||
"""Turns a list of colors into a numpy matrix and matplotlib colormap
|
||||
|
||||
These arguments can now be plotted using heatmap(matrix, cmap)
|
||||
and the provided colors will be plotted.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
colors : list of matplotlib colors
|
||||
Colors to label the rows or columns of a dataframe.
|
||||
ind : list of ints
|
||||
Ordering of the rows or columns, to reorder the original colors
|
||||
by the clustered dendrogram order
|
||||
axis : int
|
||||
Which axis this is labeling
|
||||
|
||||
Returns
|
||||
-------
|
||||
matrix : numpy.array
|
||||
A numpy array of integer values, where each corresponds to a color
|
||||
from the originally provided list of colors
|
||||
cmap : matplotlib.colors.ListedColormap
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def savefig(self, *args, **kwargs): # -> None:
|
||||
...
|
||||
|
||||
def plot_dendrograms(self, row_cluster, col_cluster, metric, method, row_linkage, col_linkage, tree_kws): # -> None:
|
||||
...
|
||||
|
||||
def plot_colors(self, xind, yind, **kws): # -> None:
|
||||
"""Plots color labels between the dendrogram and the heatmap
|
||||
|
||||
Parameters
|
||||
----------
|
||||
heatmap_kws : dict
|
||||
Keyword arguments heatmap
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def plot_matrix(self, colorbar_kws, xind, yind, **kws): # -> None:
|
||||
...
|
||||
|
||||
def plot(self, metric, method, colorbar_kws, row_cluster, col_cluster, row_linkage, col_linkage, tree_kws, **kws): # -> Self@ClusterGrid:
|
||||
...
|
||||
|
||||
|
||||
|
||||
@_deprecate_positional_args
|
||||
def clustermap(data, *, pivot_kws=..., method=..., metric=..., z_score=..., standard_scale=..., figsize=..., cbar_kws=..., row_cluster=..., col_cluster=..., row_linkage=..., col_linkage=..., row_colors=..., col_colors=..., mask=..., dendrogram_ratio=..., colors_ratio=..., cbar_pos=..., tree_kws=..., **kwargs): # -> ClusterGrid:
|
||||
"""
|
||||
Plot a matrix dataset as a hierarchically-clustered heatmap.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : 2D array-like
|
||||
Rectangular data for clustering. Cannot contain NAs.
|
||||
pivot_kws : dict, optional
|
||||
If `data` is a tidy dataframe, can provide keyword arguments for
|
||||
pivot to create a rectangular dataframe.
|
||||
method : str, optional
|
||||
Linkage method to use for calculating clusters. See
|
||||
:func:`scipy.cluster.hierarchy.linkage` documentation for more
|
||||
information.
|
||||
metric : str, optional
|
||||
Distance metric to use for the data. See
|
||||
:func:`scipy.spatial.distance.pdist` documentation for more options.
|
||||
To use different metrics (or methods) for rows and columns, you may
|
||||
construct each linkage matrix yourself and provide them as
|
||||
`{row,col}_linkage`.
|
||||
z_score : int or None, optional
|
||||
Either 0 (rows) or 1 (columns). Whether or not to calculate z-scores
|
||||
for the rows or the columns. Z scores are: z = (x - mean)/std, so
|
||||
values in each row (column) will get the mean of the row (column)
|
||||
subtracted, then divided by the standard deviation of the row (column).
|
||||
This ensures that each row (column) has mean of 0 and variance of 1.
|
||||
standard_scale : int or None, optional
|
||||
Either 0 (rows) or 1 (columns). Whether or not to standardize that
|
||||
dimension, meaning for each row or column, subtract the minimum and
|
||||
divide each by its maximum.
|
||||
figsize : tuple of (width, height), optional
|
||||
Overall size of the figure.
|
||||
cbar_kws : dict, optional
|
||||
Keyword arguments to pass to `cbar_kws` in :func:`heatmap`, e.g. to
|
||||
add a label to the colorbar.
|
||||
{row,col}_cluster : bool, optional
|
||||
If ``True``, cluster the {rows, columns}.
|
||||
{row,col}_linkage : :class:`numpy.ndarray`, optional
|
||||
Precomputed linkage matrix for the rows or columns. See
|
||||
:func:`scipy.cluster.hierarchy.linkage` for specific formats.
|
||||
{row,col}_colors : list-like or pandas DataFrame/Series, optional
|
||||
List of colors to label for either the rows or columns. Useful to evaluate
|
||||
whether samples within a group are clustered together. Can use nested lists or
|
||||
DataFrame for multiple color levels of labeling. If given as a
|
||||
:class:`pandas.DataFrame` or :class:`pandas.Series`, labels for the colors are
|
||||
extracted from the DataFrames column names or from the name of the Series.
|
||||
DataFrame/Series colors are also matched to the data by their index, ensuring
|
||||
colors are drawn in the correct order.
|
||||
mask : bool array or DataFrame, optional
|
||||
If passed, data will not be shown in cells where `mask` is True.
|
||||
Cells with missing values are automatically masked. Only used for
|
||||
visualizing, not for calculating.
|
||||
{dendrogram,colors}_ratio : float, or pair of floats, optional
|
||||
Proportion of the figure size devoted to the two marginal elements. If
|
||||
a pair is given, they correspond to (row, col) ratios.
|
||||
cbar_pos : tuple of (left, bottom, width, height), optional
|
||||
Position of the colorbar axes in the figure. Setting to ``None`` will
|
||||
disable the colorbar.
|
||||
tree_kws : dict, optional
|
||||
Parameters for the :class:`matplotlib.collections.LineCollection`
|
||||
that is used to plot the lines of the dendrogram tree.
|
||||
kwargs : other keyword arguments
|
||||
All other keyword arguments are passed to :func:`heatmap`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
:class:`ClusterGrid`
|
||||
A :class:`ClusterGrid` instance.
|
||||
|
||||
See Also
|
||||
--------
|
||||
heatmap : Plot rectangular data as a color-encoded matrix.
|
||||
|
||||
Notes
|
||||
-----
|
||||
The returned object has a ``savefig`` method that should be used if you
|
||||
want to save the figure object without clipping the dendrograms.
|
||||
|
||||
To access the reordered row indices, use:
|
||||
``clustergrid.dendrogram_row.reordered_ind``
|
||||
|
||||
Column indices, use:
|
||||
``clustergrid.dendrogram_col.reordered_ind``
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
Plot a clustered heatmap:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> import seaborn as sns; sns.set_theme(color_codes=True)
|
||||
>>> iris = sns.load_dataset("iris")
|
||||
>>> species = iris.pop("species")
|
||||
>>> g = sns.clustermap(iris)
|
||||
|
||||
Change the size and layout of the figure:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> g = sns.clustermap(iris,
|
||||
... figsize=(7, 5),
|
||||
... row_cluster=False,
|
||||
... dendrogram_ratio=(.1, .2),
|
||||
... cbar_pos=(0, .2, .03, .4))
|
||||
|
||||
Add colored labels to identify observations:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> lut = dict(zip(species.unique(), "rbg"))
|
||||
>>> row_colors = species.map(lut)
|
||||
>>> g = sns.clustermap(iris, row_colors=row_colors)
|
||||
|
||||
Use a different colormap and adjust the limits of the color range:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> g = sns.clustermap(iris, cmap="mako", vmin=0, vmax=10)
|
||||
|
||||
Use a different similarity metric:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> g = sns.clustermap(iris, metric="correlation")
|
||||
|
||||
Use a different clustering method:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> g = sns.clustermap(iris, method="single")
|
||||
|
||||
Standardize the data within the columns:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> g = sns.clustermap(iris, standard_scale=1)
|
||||
|
||||
Normalize the data within the rows:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> g = sns.clustermap(iris, z_score=0, cmap="vlag")
|
||||
"""
|
||||
...
|
||||
|
22
typings/seaborn/miscplot.pyi
Normal file
22
typings/seaborn/miscplot.pyi
Normal file
|
@ -0,0 +1,22 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
__all__ = ["palplot", "dogplot"]
|
||||
def palplot(pal, size=...): # -> None:
|
||||
"""Plot the values in a color palette as a horizontal array.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
pal : sequence of matplotlib colors
|
||||
colors, i.e. as returned by seaborn.color_palette()
|
||||
size :
|
||||
scaling factor for size of plot
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def dogplot(*_, **__): # -> None:
|
||||
"""Who's a good boy?"""
|
||||
...
|
||||
|
706
typings/seaborn/palettes.pyi
Normal file
706
typings/seaborn/palettes.pyi
Normal file
|
@ -0,0 +1,706 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
__all__ = ["color_palette", "hls_palette", "husl_palette", "mpl_palette", "dark_palette", "light_palette", "diverging_palette", "blend_palette", "xkcd_palette", "crayon_palette", "cubehelix_palette", "set_color_codes"]
|
||||
SEABORN_PALETTES = ...
|
||||
MPL_QUAL_PALS = ...
|
||||
QUAL_PALETTE_SIZES = ...
|
||||
QUAL_PALETTES = ...
|
||||
class _ColorPalette(list):
|
||||
"""Set the color palette in a with statement, otherwise be a list."""
|
||||
def __enter__(self): # -> Self@_ColorPalette:
|
||||
"""Open the context."""
|
||||
...
|
||||
|
||||
def __exit__(self, *args): # -> None:
|
||||
"""Close the context."""
|
||||
...
|
||||
|
||||
def as_hex(self): # -> _ColorPalette:
|
||||
"""Return a color palette with hex codes instead of RGB values."""
|
||||
...
|
||||
|
||||
|
||||
|
||||
def color_palette(palette=..., n_colors=..., desat=..., as_cmap=...): # -> _ColorPalette | list[tuple[float, float, float]] | Any | list[str]:
|
||||
"""Return a list of colors or continuous colormap defining a palette.
|
||||
|
||||
Possible ``palette`` values include:
|
||||
- Name of a seaborn palette (deep, muted, bright, pastel, dark, colorblind)
|
||||
- Name of matplotlib colormap
|
||||
- 'husl' or 'hls'
|
||||
- 'ch:<cubehelix arguments>'
|
||||
- 'light:<color>', 'dark:<color>', 'blend:<color>,<color>',
|
||||
- A sequence of colors in any format matplotlib accepts
|
||||
|
||||
Calling this function with ``palette=None`` will return the current
|
||||
matplotlib color cycle.
|
||||
|
||||
This function can also be used in a ``with`` statement to temporarily
|
||||
set the color cycle for a plot or set of plots.
|
||||
|
||||
See the :ref:`tutorial <palette_tutorial>` for more information.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
palette: None, string, or sequence, optional
|
||||
Name of palette or None to return current palette. If a sequence, input
|
||||
colors are used but possibly cycled and desaturated.
|
||||
n_colors : int, optional
|
||||
Number of colors in the palette. If ``None``, the default will depend
|
||||
on how ``palette`` is specified. Named palettes default to 6 colors,
|
||||
but grabbing the current palette or passing in a list of colors will
|
||||
not change the number of colors unless this is specified. Asking for
|
||||
more colors than exist in the palette will cause it to cycle. Ignored
|
||||
when ``as_cmap`` is True.
|
||||
desat : float, optional
|
||||
Proportion to desaturate each color by.
|
||||
as_cmap : bool
|
||||
If True, return a :class:`matplotlib.colors.Colormap`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
list of RGB tuples or :class:`matplotlib.colors.Colormap`
|
||||
|
||||
See Also
|
||||
--------
|
||||
set_palette : Set the default color cycle for all plots.
|
||||
set_color_codes : Reassign color codes like ``"b"``, ``"g"``, etc. to
|
||||
colors from one of the seaborn palettes.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
.. include:: ../docstrings/color_palette.rst
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def hls_palette(n_colors=..., h=..., l=..., s=..., as_cmap=...): # -> _ColorPalette:
|
||||
"""Get a set of evenly spaced colors in HLS hue space.
|
||||
|
||||
h, l, and s should be between 0 and 1
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
n_colors : int
|
||||
number of colors in the palette
|
||||
h : float
|
||||
first hue
|
||||
l : float
|
||||
lightness
|
||||
s : float
|
||||
saturation
|
||||
|
||||
Returns
|
||||
-------
|
||||
list of RGB tuples or :class:`matplotlib.colors.Colormap`
|
||||
|
||||
See Also
|
||||
--------
|
||||
husl_palette : Make a palette using evenly spaced hues in the HUSL system.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
Create a palette of 10 colors with the default parameters:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> import seaborn as sns; sns.set_theme()
|
||||
>>> sns.palplot(sns.hls_palette(10))
|
||||
|
||||
Create a palette of 10 colors that begins at a different hue value:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> sns.palplot(sns.hls_palette(10, h=.5))
|
||||
|
||||
Create a palette of 10 colors that are darker than the default:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> sns.palplot(sns.hls_palette(10, l=.4))
|
||||
|
||||
Create a palette of 10 colors that are less saturated than the default:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> sns.palplot(sns.hls_palette(10, s=.4))
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def husl_palette(n_colors=..., h=..., s=..., l=..., as_cmap=...): # -> _ColorPalette:
|
||||
"""Get a set of evenly spaced colors in HUSL hue space.
|
||||
|
||||
h, s, and l should be between 0 and 1
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
n_colors : int
|
||||
number of colors in the palette
|
||||
h : float
|
||||
first hue
|
||||
s : float
|
||||
saturation
|
||||
l : float
|
||||
lightness
|
||||
|
||||
Returns
|
||||
-------
|
||||
list of RGB tuples or :class:`matplotlib.colors.Colormap`
|
||||
|
||||
See Also
|
||||
--------
|
||||
hls_palette : Make a palette using evently spaced circular hues in the
|
||||
HSL system.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
Create a palette of 10 colors with the default parameters:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> import seaborn as sns; sns.set_theme()
|
||||
>>> sns.palplot(sns.husl_palette(10))
|
||||
|
||||
Create a palette of 10 colors that begins at a different hue value:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> sns.palplot(sns.husl_palette(10, h=.5))
|
||||
|
||||
Create a palette of 10 colors that are darker than the default:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> sns.palplot(sns.husl_palette(10, l=.4))
|
||||
|
||||
Create a palette of 10 colors that are less saturated than the default:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> sns.palplot(sns.husl_palette(10, s=.4))
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def mpl_palette(name, n_colors=..., as_cmap=...): # -> _ColorPalette:
|
||||
"""Return discrete colors from a matplotlib palette.
|
||||
|
||||
Note that this handles the qualitative colorbrewer palettes
|
||||
properly, although if you ask for more colors than a particular
|
||||
qualitative palette can provide you will get fewer than you are
|
||||
expecting. In contrast, asking for qualitative color brewer palettes
|
||||
using :func:`color_palette` will return the expected number of colors,
|
||||
but they will cycle.
|
||||
|
||||
If you are using the IPython notebook, you can also use the function
|
||||
:func:`choose_colorbrewer_palette` to interactively select palettes.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name : string
|
||||
Name of the palette. This should be a named matplotlib colormap.
|
||||
n_colors : int
|
||||
Number of discrete colors in the palette.
|
||||
|
||||
Returns
|
||||
-------
|
||||
list of RGB tuples or :class:`matplotlib.colors.Colormap`
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
Create a qualitative colorbrewer palette with 8 colors:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> import seaborn as sns; sns.set_theme()
|
||||
>>> sns.palplot(sns.mpl_palette("Set2", 8))
|
||||
|
||||
Create a sequential colorbrewer palette:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> sns.palplot(sns.mpl_palette("Blues"))
|
||||
|
||||
Create a diverging palette:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> sns.palplot(sns.mpl_palette("seismic", 8))
|
||||
|
||||
Create a "dark" sequential palette:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> sns.palplot(sns.mpl_palette("GnBu_d"))
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def dark_palette(color, n_colors=..., reverse=..., as_cmap=..., input=...): # -> _ColorPalette:
|
||||
"""Make a sequential palette that blends from dark to ``color``.
|
||||
|
||||
This kind of palette is good for data that range between relatively
|
||||
uninteresting low values and interesting high values.
|
||||
|
||||
The ``color`` parameter can be specified in a number of ways, including
|
||||
all options for defining a color in matplotlib and several additional
|
||||
color spaces that are handled by seaborn. You can also use the database
|
||||
of named colors from the XKCD color survey.
|
||||
|
||||
If you are using the IPython notebook, you can also choose this palette
|
||||
interactively with the :func:`choose_dark_palette` function.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
color : base color for high values
|
||||
hex, rgb-tuple, or html color name
|
||||
n_colors : int, optional
|
||||
number of colors in the palette
|
||||
reverse : bool, optional
|
||||
if True, reverse the direction of the blend
|
||||
as_cmap : bool, optional
|
||||
If True, return a :class:`matplotlib.colors.Colormap`.
|
||||
input : {'rgb', 'hls', 'husl', xkcd'}
|
||||
Color space to interpret the input color. The first three options
|
||||
apply to tuple inputs and the latter applies to string inputs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
list of RGB tuples or :class:`matplotlib.colors.Colormap`
|
||||
|
||||
See Also
|
||||
--------
|
||||
light_palette : Create a sequential palette with bright low values.
|
||||
diverging_palette : Create a diverging palette with two colors.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
Generate a palette from an HTML color:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> import seaborn as sns; sns.set_theme()
|
||||
>>> sns.palplot(sns.dark_palette("purple"))
|
||||
|
||||
Generate a palette that decreases in lightness:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> sns.palplot(sns.dark_palette("seagreen", reverse=True))
|
||||
|
||||
Generate a palette from an HUSL-space seed:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> sns.palplot(sns.dark_palette((260, 75, 60), input="husl"))
|
||||
|
||||
Generate a colormap object:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> from numpy import arange
|
||||
>>> x = arange(25).reshape(5, 5)
|
||||
>>> cmap = sns.dark_palette("#2ecc71", as_cmap=True)
|
||||
>>> ax = sns.heatmap(x, cmap=cmap)
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def light_palette(color, n_colors=..., reverse=..., as_cmap=..., input=...): # -> _ColorPalette:
|
||||
"""Make a sequential palette that blends from light to ``color``.
|
||||
|
||||
This kind of palette is good for data that range between relatively
|
||||
uninteresting low values and interesting high values.
|
||||
|
||||
The ``color`` parameter can be specified in a number of ways, including
|
||||
all options for defining a color in matplotlib and several additional
|
||||
color spaces that are handled by seaborn. You can also use the database
|
||||
of named colors from the XKCD color survey.
|
||||
|
||||
If you are using the IPython notebook, you can also choose this palette
|
||||
interactively with the :func:`choose_light_palette` function.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
color : base color for high values
|
||||
hex code, html color name, or tuple in ``input`` space.
|
||||
n_colors : int, optional
|
||||
number of colors in the palette
|
||||
reverse : bool, optional
|
||||
if True, reverse the direction of the blend
|
||||
as_cmap : bool, optional
|
||||
If True, return a :class:`matplotlib.colors.Colormap`.
|
||||
input : {'rgb', 'hls', 'husl', xkcd'}
|
||||
Color space to interpret the input color. The first three options
|
||||
apply to tuple inputs and the latter applies to string inputs.
|
||||
|
||||
Returns
|
||||
-------
|
||||
list of RGB tuples or :class:`matplotlib.colors.Colormap`
|
||||
|
||||
See Also
|
||||
--------
|
||||
dark_palette : Create a sequential palette with dark low values.
|
||||
diverging_palette : Create a diverging palette with two colors.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
Generate a palette from an HTML color:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> import seaborn as sns; sns.set_theme()
|
||||
>>> sns.palplot(sns.light_palette("purple"))
|
||||
|
||||
Generate a palette that increases in lightness:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> sns.palplot(sns.light_palette("seagreen", reverse=True))
|
||||
|
||||
Generate a palette from an HUSL-space seed:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> sns.palplot(sns.light_palette((260, 75, 60), input="husl"))
|
||||
|
||||
Generate a colormap object:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> from numpy import arange
|
||||
>>> x = arange(25).reshape(5, 5)
|
||||
>>> cmap = sns.light_palette("#2ecc71", as_cmap=True)
|
||||
>>> ax = sns.heatmap(x, cmap=cmap)
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def diverging_palette(h_neg, h_pos, s=..., l=..., sep=..., n=..., center=..., as_cmap=...): # -> _ColorPalette:
|
||||
"""Make a diverging palette between two HUSL colors.
|
||||
|
||||
If you are using the IPython notebook, you can also choose this palette
|
||||
interactively with the :func:`choose_diverging_palette` function.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
h_neg, h_pos : float in [0, 359]
|
||||
Anchor hues for negative and positive extents of the map.
|
||||
s : float in [0, 100], optional
|
||||
Anchor saturation for both extents of the map.
|
||||
l : float in [0, 100], optional
|
||||
Anchor lightness for both extents of the map.
|
||||
sep : int, optional
|
||||
Size of the intermediate region.
|
||||
n : int, optional
|
||||
Number of colors in the palette (if not returning a cmap)
|
||||
center : {"light", "dark"}, optional
|
||||
Whether the center of the palette is light or dark
|
||||
as_cmap : bool, optional
|
||||
If True, return a :class:`matplotlib.colors.Colormap`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
list of RGB tuples or :class:`matplotlib.colors.Colormap`
|
||||
|
||||
See Also
|
||||
--------
|
||||
dark_palette : Create a sequential palette with dark values.
|
||||
light_palette : Create a sequential palette with light values.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
Generate a blue-white-red palette:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> import seaborn as sns; sns.set_theme()
|
||||
>>> sns.palplot(sns.diverging_palette(240, 10, n=9))
|
||||
|
||||
Generate a brighter green-white-purple palette:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> sns.palplot(sns.diverging_palette(150, 275, s=80, l=55, n=9))
|
||||
|
||||
Generate a blue-black-red palette:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> sns.palplot(sns.diverging_palette(250, 15, s=75, l=40,
|
||||
... n=9, center="dark"))
|
||||
|
||||
Generate a colormap object:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> from numpy import arange
|
||||
>>> x = arange(25).reshape(5, 5)
|
||||
>>> cmap = sns.diverging_palette(220, 20, as_cmap=True)
|
||||
>>> ax = sns.heatmap(x, cmap=cmap)
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def blend_palette(colors, n_colors=..., as_cmap=..., input=...): # -> _ColorPalette:
|
||||
"""Make a palette that blends between a list of colors.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
colors : sequence of colors in various formats interpreted by ``input``
|
||||
hex code, html color name, or tuple in ``input`` space.
|
||||
n_colors : int, optional
|
||||
Number of colors in the palette.
|
||||
as_cmap : bool, optional
|
||||
If True, return a :class:`matplotlib.colors.Colormap`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
list of RGB tuples or :class:`matplotlib.colors.Colormap`
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def xkcd_palette(colors): # -> _ColorPalette | list[tuple[float, float, float]] | Any | list[str]:
|
||||
"""Make a palette with color names from the xkcd color survey.
|
||||
|
||||
See xkcd for the full list of colors: https://xkcd.com/color/rgb/
|
||||
|
||||
This is just a simple wrapper around the ``seaborn.xkcd_rgb`` dictionary.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
colors : list of strings
|
||||
List of keys in the ``seaborn.xkcd_rgb`` dictionary.
|
||||
|
||||
Returns
|
||||
-------
|
||||
palette : seaborn color palette
|
||||
Returns the list of colors as RGB tuples in an object that behaves like
|
||||
other seaborn color palettes.
|
||||
|
||||
See Also
|
||||
--------
|
||||
crayon_palette : Make a palette with Crayola crayon colors.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def crayon_palette(colors): # -> _ColorPalette | list[tuple[float, float, float]] | Any | list[str]:
|
||||
"""Make a palette with color names from Crayola crayons.
|
||||
|
||||
Colors are taken from here:
|
||||
https://en.wikipedia.org/wiki/List_of_Crayola_crayon_colors
|
||||
|
||||
This is just a simple wrapper around the ``seaborn.crayons`` dictionary.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
colors : list of strings
|
||||
List of keys in the ``seaborn.crayons`` dictionary.
|
||||
|
||||
Returns
|
||||
-------
|
||||
palette : seaborn color palette
|
||||
Returns the list of colors as rgb tuples in an object that behaves like
|
||||
other seaborn color palettes.
|
||||
|
||||
See Also
|
||||
--------
|
||||
xkcd_palette : Make a palette with named colors from the XKCD color survey.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def cubehelix_palette(n_colors=..., start=..., rot=..., gamma=..., hue=..., light=..., dark=..., reverse=..., as_cmap=...): # -> _ColorPalette:
|
||||
"""Make a sequential palette from the cubehelix system.
|
||||
|
||||
This produces a colormap with linearly-decreasing (or increasing)
|
||||
brightness. That means that information will be preserved if printed to
|
||||
black and white or viewed by someone who is colorblind. "cubehelix" is
|
||||
also available as a matplotlib-based palette, but this function gives the
|
||||
user more control over the look of the palette and has a different set of
|
||||
defaults.
|
||||
|
||||
In addition to using this function, it is also possible to generate a
|
||||
cubehelix palette generally in seaborn using a string-shorthand; see the
|
||||
example below.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_colors : int
|
||||
Number of colors in the palette.
|
||||
start : float, 0 <= start <= 3
|
||||
The hue at the start of the helix.
|
||||
rot : float
|
||||
Rotations around the hue wheel over the range of the palette.
|
||||
gamma : float 0 <= gamma
|
||||
Gamma factor to emphasize darker (gamma < 1) or lighter (gamma > 1)
|
||||
colors.
|
||||
hue : float, 0 <= hue <= 1
|
||||
Saturation of the colors.
|
||||
dark : float 0 <= dark <= 1
|
||||
Intensity of the darkest color in the palette.
|
||||
light : float 0 <= light <= 1
|
||||
Intensity of the lightest color in the palette.
|
||||
reverse : bool
|
||||
If True, the palette will go from dark to light.
|
||||
as_cmap : bool
|
||||
If True, return a :class:`matplotlib.colors.Colormap`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
list of RGB tuples or :class:`matplotlib.colors.Colormap`
|
||||
|
||||
See Also
|
||||
--------
|
||||
choose_cubehelix_palette : Launch an interactive widget to select cubehelix
|
||||
palette parameters.
|
||||
dark_palette : Create a sequential palette with dark low values.
|
||||
light_palette : Create a sequential palette with bright low values.
|
||||
|
||||
References
|
||||
----------
|
||||
Green, D. A. (2011). "A colour scheme for the display of astronomical
|
||||
intensity images". Bulletin of the Astromical Society of India, Vol. 39,
|
||||
p. 289-295.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
Generate the default palette:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> import seaborn as sns; sns.set_theme()
|
||||
>>> sns.palplot(sns.cubehelix_palette())
|
||||
|
||||
Rotate backwards from the same starting location:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> sns.palplot(sns.cubehelix_palette(rot=-.4))
|
||||
|
||||
Use a different starting point and shorter rotation:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> sns.palplot(sns.cubehelix_palette(start=2.8, rot=.1))
|
||||
|
||||
Reverse the direction of the lightness ramp:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> sns.palplot(sns.cubehelix_palette(reverse=True))
|
||||
|
||||
Generate a colormap object:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> from numpy import arange
|
||||
>>> x = arange(25).reshape(5, 5)
|
||||
>>> cmap = sns.cubehelix_palette(as_cmap=True)
|
||||
>>> ax = sns.heatmap(x, cmap=cmap)
|
||||
|
||||
Use the full lightness range:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> cmap = sns.cubehelix_palette(dark=0, light=1, as_cmap=True)
|
||||
>>> ax = sns.heatmap(x, cmap=cmap)
|
||||
|
||||
Use through the :func:`color_palette` interface:
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> sns.palplot(sns.color_palette("ch:2,r=.2,l=.6"))
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def set_color_codes(palette=...): # -> None:
|
||||
"""Change how matplotlib color shorthands are interpreted.
|
||||
|
||||
Calling this will change how shorthand codes like "b" or "g"
|
||||
are interpreted by matplotlib in subsequent plots.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
palette : {deep, muted, pastel, dark, bright, colorblind}
|
||||
Named seaborn palette to use as the source of colors.
|
||||
|
||||
See Also
|
||||
--------
|
||||
set : Color codes can be set through the high-level seaborn style
|
||||
manager.
|
||||
set_palette : Color codes can also be set through the function that
|
||||
sets the matplotlib color cycle.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
Map matplotlib color codes to the default seaborn palette.
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> import matplotlib.pyplot as plt
|
||||
>>> import seaborn as sns; sns.set_theme()
|
||||
>>> sns.set_color_codes()
|
||||
>>> _ = plt.plot([0, 1], color="r")
|
||||
|
||||
Use a different seaborn palette.
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> sns.set_color_codes("dark")
|
||||
>>> _ = plt.plot([0, 1], color="g")
|
||||
>>> _ = plt.plot([0, 2], color="m")
|
||||
|
||||
"""
|
||||
...
|
||||
|
265
typings/seaborn/rcmod.pyi
Normal file
265
typings/seaborn/rcmod.pyi
Normal file
|
@ -0,0 +1,265 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import matplotlib as mpl
|
||||
from distutils.version import LooseVersion
|
||||
|
||||
"""Control plot style and scaling using the matplotlib rcParams interface."""
|
||||
__all__ = ["set_theme", "set", "reset_defaults", "reset_orig", "axes_style", "set_style", "plotting_context", "set_context", "set_palette"]
|
||||
_style_keys = ...
|
||||
_context_keys = ...
|
||||
if LooseVersion(mpl.__version__) >= "3.0":
|
||||
...
|
||||
def set_theme(context=..., style=..., palette=..., font=..., font_scale=..., color_codes=..., rc=...): # -> None:
|
||||
"""Set multiple theme parameters in one step.
|
||||
|
||||
Each set of parameters can be set directly or temporarily, see the
|
||||
referenced functions below for more information.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
context : string or dict
|
||||
Plotting context parameters, see :func:`plotting_context`.
|
||||
style : string or dict
|
||||
Axes style parameters, see :func:`axes_style`.
|
||||
palette : string or sequence
|
||||
Color palette, see :func:`color_palette`.
|
||||
font : string
|
||||
Font family, see matplotlib font manager.
|
||||
font_scale : float, optional
|
||||
Separate scaling factor to independently scale the size of the
|
||||
font elements.
|
||||
color_codes : bool
|
||||
If ``True`` and ``palette`` is a seaborn palette, remap the shorthand
|
||||
color codes (e.g. "b", "g", "r", etc.) to the colors from this palette.
|
||||
rc : dict or None
|
||||
Dictionary of rc parameter mappings to override the above.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def set(*args, **kwargs): # -> None:
|
||||
"""Alias for :func:`set_theme`, which is the preferred interface."""
|
||||
...
|
||||
|
||||
def reset_defaults(): # -> None:
|
||||
"""Restore all RC params to default settings."""
|
||||
...
|
||||
|
||||
def reset_orig(): # -> None:
|
||||
"""Restore all RC params to original settings (respects custom rc)."""
|
||||
...
|
||||
|
||||
def axes_style(style=..., rc=...): # -> _AxesStyle:
|
||||
"""Return a parameter dict for the aesthetic style of the plots.
|
||||
|
||||
This affects things like the color of the axes, whether a grid is
|
||||
enabled by default, and other aesthetic elements.
|
||||
|
||||
This function returns an object that can be used in a ``with`` statement
|
||||
to temporarily change the style parameters.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
style : dict, None, or one of {darkgrid, whitegrid, dark, white, ticks}
|
||||
A dictionary of parameters or the name of a preconfigured set.
|
||||
rc : dict, optional
|
||||
Parameter mappings to override the values in the preset seaborn
|
||||
style dictionaries. This only updates parameters that are
|
||||
considered part of the style definition.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> st = axes_style("whitegrid")
|
||||
|
||||
>>> set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8})
|
||||
|
||||
>>> import matplotlib.pyplot as plt
|
||||
>>> with axes_style("white"):
|
||||
... f, ax = plt.subplots()
|
||||
... ax.plot(x, y) # doctest: +SKIP
|
||||
|
||||
See Also
|
||||
--------
|
||||
set_style : set the matplotlib parameters for a seaborn theme
|
||||
plotting_context : return a parameter dict to to scale plot elements
|
||||
color_palette : define the color palette for a plot
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def set_style(style=..., rc=...): # -> None:
|
||||
"""Set the aesthetic style of the plots.
|
||||
|
||||
This affects things like the color of the axes, whether a grid is
|
||||
enabled by default, and other aesthetic elements.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
style : dict, None, or one of {darkgrid, whitegrid, dark, white, ticks}
|
||||
A dictionary of parameters or the name of a preconfigured set.
|
||||
rc : dict, optional
|
||||
Parameter mappings to override the values in the preset seaborn
|
||||
style dictionaries. This only updates parameters that are
|
||||
considered part of the style definition.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> set_style("whitegrid")
|
||||
|
||||
>>> set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8})
|
||||
|
||||
See Also
|
||||
--------
|
||||
axes_style : return a dict of parameters or use in a ``with`` statement
|
||||
to temporarily set the style.
|
||||
set_context : set parameters to scale plot elements
|
||||
set_palette : set the default color palette for figures
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def plotting_context(context=..., font_scale=..., rc=...): # -> _PlottingContext:
|
||||
"""Return a parameter dict to scale elements of the figure.
|
||||
|
||||
This affects things like the size of the labels, lines, and other
|
||||
elements of the plot, but not the overall style. The base context
|
||||
is "notebook", and the other contexts are "paper", "talk", and "poster",
|
||||
which are version of the notebook parameters scaled by .8, 1.3, and 1.6,
|
||||
respectively.
|
||||
|
||||
This function returns an object that can be used in a ``with`` statement
|
||||
to temporarily change the context parameters.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
context : dict, None, or one of {paper, notebook, talk, poster}
|
||||
A dictionary of parameters or the name of a preconfigured set.
|
||||
font_scale : float, optional
|
||||
Separate scaling factor to independently scale the size of the
|
||||
font elements.
|
||||
rc : dict, optional
|
||||
Parameter mappings to override the values in the preset seaborn
|
||||
context dictionaries. This only updates parameters that are
|
||||
considered part of the context definition.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> c = plotting_context("poster")
|
||||
|
||||
>>> c = plotting_context("notebook", font_scale=1.5)
|
||||
|
||||
>>> c = plotting_context("talk", rc={"lines.linewidth": 2})
|
||||
|
||||
>>> import matplotlib.pyplot as plt
|
||||
>>> with plotting_context("paper"):
|
||||
... f, ax = plt.subplots()
|
||||
... ax.plot(x, y) # doctest: +SKIP
|
||||
|
||||
See Also
|
||||
--------
|
||||
set_context : set the matplotlib parameters to scale plot elements
|
||||
axes_style : return a dict of parameters defining a figure style
|
||||
color_palette : define the color palette for a plot
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def set_context(context=..., font_scale=..., rc=...): # -> None:
|
||||
"""Set the plotting context parameters.
|
||||
|
||||
This affects things like the size of the labels, lines, and other
|
||||
elements of the plot, but not the overall style. The base context
|
||||
is "notebook", and the other contexts are "paper", "talk", and "poster",
|
||||
which are version of the notebook parameters scaled by .8, 1.3, and 1.6,
|
||||
respectively.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
context : dict, None, or one of {paper, notebook, talk, poster}
|
||||
A dictionary of parameters or the name of a preconfigured set.
|
||||
font_scale : float, optional
|
||||
Separate scaling factor to independently scale the size of the
|
||||
font elements.
|
||||
rc : dict, optional
|
||||
Parameter mappings to override the values in the preset seaborn
|
||||
context dictionaries. This only updates parameters that are
|
||||
considered part of the context definition.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> set_context("paper")
|
||||
|
||||
>>> set_context("talk", font_scale=1.4)
|
||||
|
||||
>>> set_context("talk", rc={"lines.linewidth": 2})
|
||||
|
||||
See Also
|
||||
--------
|
||||
plotting_context : return a dictionary of rc parameters, or use in
|
||||
a ``with`` statement to temporarily set the context.
|
||||
set_style : set the default parameters for figure style
|
||||
set_palette : set the default color palette for figures
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
class _RCAesthetics(dict):
|
||||
def __enter__(self): # -> None:
|
||||
...
|
||||
|
||||
def __exit__(self, exc_type, exc_value, exc_tb): # -> None:
|
||||
...
|
||||
|
||||
def __call__(self, func): # -> _Wrapped[..., Unknown, (*args: Unknown, **kwargs: Unknown), Unknown]:
|
||||
...
|
||||
|
||||
|
||||
|
||||
class _AxesStyle(_RCAesthetics):
|
||||
"""Light wrapper on a dict to set style temporarily."""
|
||||
_keys = ...
|
||||
_set = ...
|
||||
|
||||
|
||||
class _PlottingContext(_RCAesthetics):
|
||||
"""Light wrapper on a dict to set context temporarily."""
|
||||
_keys = ...
|
||||
_set = ...
|
||||
|
||||
|
||||
def set_palette(palette, n_colors=..., desat=..., color_codes=...): # -> None:
|
||||
"""Set the matplotlib color cycle using a seaborn palette.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
palette : seaborn color paltte | matplotlib colormap | hls | husl
|
||||
Palette definition. Should be something that :func:`color_palette`
|
||||
can process.
|
||||
n_colors : int
|
||||
Number of colors in the cycle. The default number of colors will depend
|
||||
on the format of ``palette``, see the :func:`color_palette`
|
||||
documentation for more information.
|
||||
desat : float
|
||||
Proportion to desaturate each color by.
|
||||
color_codes : bool
|
||||
If ``True`` and ``palette`` is a seaborn palette, remap the shorthand
|
||||
color codes (e.g. "b", "g", "r", etc.) to the colors from this palette.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> set_palette("Reds")
|
||||
|
||||
>>> set_palette("Set1", 8, .75)
|
||||
|
||||
See Also
|
||||
--------
|
||||
color_palette : build a color palette or set the color cycle temporarily
|
||||
in a ``with`` statement.
|
||||
set_context : set parameters to scale plot elements
|
||||
set_style : set the default parameters for figure style
|
||||
|
||||
"""
|
||||
...
|
||||
|
158
typings/seaborn/regression.pyi
Normal file
158
typings/seaborn/regression.pyi
Normal file
|
@ -0,0 +1,158 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from ._decorators import _deprecate_positional_args
|
||||
|
||||
"""Plotting functions for linear models (broadly construed)."""
|
||||
_has_statsmodels = ...
|
||||
__all__ = ["lmplot", "regplot", "residplot"]
|
||||
class _LinearPlotter:
|
||||
"""Base class for plotting relational data in tidy format.
|
||||
|
||||
To get anything useful done you'll have to inherit from this, but setup
|
||||
code that can be abstracted out should be put here.
|
||||
|
||||
"""
|
||||
def establish_variables(self, data, **kws): # -> None:
|
||||
"""Extract variables from data or use directly."""
|
||||
...
|
||||
|
||||
def dropna(self, *vars): # -> None:
|
||||
"""Remove observations with missing data."""
|
||||
...
|
||||
|
||||
def plot(self, ax):
|
||||
...
|
||||
|
||||
|
||||
|
||||
class _RegressionPlotter(_LinearPlotter):
|
||||
"""Plotter for numeric independent variables with regression model.
|
||||
|
||||
This does the computations and drawing for the `regplot` function, and
|
||||
is thus also used indirectly by `lmplot`.
|
||||
"""
|
||||
def __init__(self, x, y, data=..., x_estimator=..., x_bins=..., x_ci=..., scatter=..., fit_reg=..., ci=..., n_boot=..., units=..., seed=..., order=..., logistic=..., lowess=..., robust=..., logx=..., x_partial=..., y_partial=..., truncate=..., dropna=..., x_jitter=..., y_jitter=..., color=..., label=...) -> None:
|
||||
...
|
||||
|
||||
@property
|
||||
def scatter_data(self): # -> tuple[ndarray[Any, dtype[Unknown]] | NDArray[floating[Any]], ndarray[Any, dtype[Unknown]] | NDArray[floating[Any]]]:
|
||||
"""Data where each observation is a point."""
|
||||
...
|
||||
|
||||
@property
|
||||
def estimate_data(self): # -> tuple[list[Any], list[Unknown], list[Unknown]]:
|
||||
"""Data with a point estimate and CI for each discrete x value."""
|
||||
...
|
||||
|
||||
def fit_regression(self, ax=..., x_range=..., grid=...): # -> tuple[Unknown, Unknown | NDArray[float64] | Any, Unknown | None]:
|
||||
"""Fit the regression model."""
|
||||
...
|
||||
|
||||
def fit_fast(self, grid): # -> tuple[Any, None] | tuple[Any, Any]:
|
||||
"""Low-level regression and prediction using linear algebra."""
|
||||
...
|
||||
|
||||
def fit_poly(self, grid, order): # -> tuple[Unknown, None] | tuple[Unknown, NDArray[Unknown]]:
|
||||
"""Regression using numpy polyfit for higher-order trends."""
|
||||
...
|
||||
|
||||
def fit_statsmodels(self, grid, model, **kwargs): # -> tuple[Unknown | NDArray[float64], None] | tuple[Unknown | NDArray[float64], NDArray[Unknown]]:
|
||||
"""More general regression function using statsmodels objects."""
|
||||
...
|
||||
|
||||
def fit_lowess(self): # -> tuple[Unknown, Unknown]:
|
||||
"""Fit a locally-weighted regression, which returns its own grid."""
|
||||
...
|
||||
|
||||
def fit_logx(self, grid): # -> tuple[Any, None] | tuple[Any, Any]:
|
||||
"""Fit the model in log-space."""
|
||||
...
|
||||
|
||||
def bin_predictor(self, bins): # -> tuple[Any, Any]:
|
||||
"""Discretize a predictor by assigning value to closest bin."""
|
||||
...
|
||||
|
||||
def regress_out(self, a, b): # -> ndarray[Any, dtype[Unknown]]:
|
||||
"""Regress b from a keeping a's original mean."""
|
||||
...
|
||||
|
||||
def plot(self, ax, scatter_kws, line_kws): # -> None:
|
||||
"""Draw the full plot."""
|
||||
...
|
||||
|
||||
def scatterplot(self, ax, kws): # -> None:
|
||||
"""Draw the data."""
|
||||
...
|
||||
|
||||
def lineplot(self, ax, kws): # -> None:
|
||||
"""Draw the model."""
|
||||
...
|
||||
|
||||
|
||||
|
||||
_regression_docs = ...
|
||||
@_deprecate_positional_args
|
||||
def lmplot(*, x=..., y=..., data=..., hue=..., col=..., row=..., palette=..., col_wrap=..., height=..., aspect=..., markers=..., sharex=..., sharey=..., hue_order=..., col_order=..., row_order=..., legend=..., legend_out=..., x_estimator=..., x_bins=..., x_ci=..., scatter=..., fit_reg=..., ci=..., n_boot=..., units=..., seed=..., order=..., logistic=..., lowess=..., robust=..., logx=..., x_partial=..., y_partial=..., truncate=..., x_jitter=..., y_jitter=..., scatter_kws=..., line_kws=..., size=...): # -> FacetGrid:
|
||||
...
|
||||
|
||||
@_deprecate_positional_args
|
||||
def regplot(*, x=..., y=..., data=..., x_estimator=..., x_bins=..., x_ci=..., scatter=..., fit_reg=..., ci=..., n_boot=..., units=..., seed=..., order=..., logistic=..., lowess=..., robust=..., logx=..., x_partial=..., y_partial=..., truncate=..., dropna=..., x_jitter=..., y_jitter=..., label=..., color=..., marker=..., scatter_kws=..., line_kws=..., ax=...): # -> Axes:
|
||||
...
|
||||
|
||||
@_deprecate_positional_args
|
||||
def residplot(*, x=..., y=..., data=..., lowess=..., x_partial=..., y_partial=..., order=..., robust=..., dropna=..., label=..., color=..., scatter_kws=..., line_kws=..., ax=...): # -> Axes:
|
||||
"""Plot the residuals of a linear regression.
|
||||
|
||||
This function will regress y on x (possibly as a robust or polynomial
|
||||
regression) and then draw a scatterplot of the residuals. You can
|
||||
optionally fit a lowess smoother to the residual plot, which can
|
||||
help in determining if there is structure to the residuals.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : vector or string
|
||||
Data or column name in `data` for the predictor variable.
|
||||
y : vector or string
|
||||
Data or column name in `data` for the response variable.
|
||||
data : DataFrame, optional
|
||||
DataFrame to use if `x` and `y` are column names.
|
||||
lowess : boolean, optional
|
||||
Fit a lowess smoother to the residual scatterplot.
|
||||
{x, y}_partial : matrix or string(s) , optional
|
||||
Matrix with same first dimension as `x`, or column name(s) in `data`.
|
||||
These variables are treated as confounding and are removed from
|
||||
the `x` or `y` variables before plotting.
|
||||
order : int, optional
|
||||
Order of the polynomial to fit when calculating the residuals.
|
||||
robust : boolean, optional
|
||||
Fit a robust linear regression when calculating the residuals.
|
||||
dropna : boolean, optional
|
||||
If True, ignore observations with missing data when fitting and
|
||||
plotting.
|
||||
label : string, optional
|
||||
Label that will be used in any plot legends.
|
||||
color : matplotlib color, optional
|
||||
Color to use for all elements of the plot.
|
||||
{scatter, line}_kws : dictionaries, optional
|
||||
Additional keyword arguments passed to scatter() and plot() for drawing
|
||||
the components of the plot.
|
||||
ax : matplotlib axis, optional
|
||||
Plot into this axis, otherwise grab the current axis or make a new
|
||||
one if not existing.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ax: matplotlib axes
|
||||
Axes with the regression plot.
|
||||
|
||||
See Also
|
||||
--------
|
||||
regplot : Plot a simple linear regression model.
|
||||
jointplot : Draw a :func:`residplot` with univariate marginal distributions
|
||||
(when used with ``kind="resid"``).
|
||||
|
||||
"""
|
||||
...
|
||||
|
59
typings/seaborn/relational.pyi
Normal file
59
typings/seaborn/relational.pyi
Normal file
|
@ -0,0 +1,59 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from ._core import VectorPlotter
|
||||
from ._decorators import _deprecate_positional_args
|
||||
|
||||
__all__ = ["relplot", "scatterplot", "lineplot"]
|
||||
_relational_narrative = ...
|
||||
_relational_docs = ...
|
||||
_param_docs = ...
|
||||
class _RelationalPlotter(VectorPlotter):
|
||||
wide_structure = ...
|
||||
sort = ...
|
||||
def add_legend_data(self, ax):
|
||||
"""Add labeled artists to represent the different plot semantics."""
|
||||
...
|
||||
|
||||
|
||||
|
||||
class _LinePlotter(_RelationalPlotter):
|
||||
_legend_attributes = ...
|
||||
_legend_func = ...
|
||||
def __init__(self, *, data=..., variables=..., estimator=..., ci=..., n_boot=..., seed=..., sort=..., err_style=..., err_kws=..., legend=...) -> None:
|
||||
...
|
||||
|
||||
def aggregate(self, vals, grouper, units=...): # -> tuple[Unknown, Unknown, None] | tuple[Unknown, Unknown, Series | DataFrame | Unknown | None]:
|
||||
"""Compute an estimate and confidence interval using grouper."""
|
||||
...
|
||||
|
||||
def plot(self, ax, kws): # -> None:
|
||||
"""Draw the plot onto an axes, passing matplotlib kwargs."""
|
||||
...
|
||||
|
||||
|
||||
|
||||
class _ScatterPlotter(_RelationalPlotter):
|
||||
_legend_attributes = ...
|
||||
_legend_func = ...
|
||||
def __init__(self, *, data=..., variables=..., x_bins=..., y_bins=..., estimator=..., ci=..., n_boot=..., alpha=..., x_jitter=..., y_jitter=..., legend=...) -> None:
|
||||
...
|
||||
|
||||
def plot(self, ax, kws): # -> None:
|
||||
...
|
||||
|
||||
|
||||
|
||||
@_deprecate_positional_args
|
||||
def lineplot(*, x=..., y=..., hue=..., size=..., style=..., data=..., palette=..., hue_order=..., hue_norm=..., sizes=..., size_order=..., size_norm=..., dashes=..., markers=..., style_order=..., units=..., estimator=..., ci=..., n_boot=..., seed=..., sort=..., err_style=..., err_kws=..., legend=..., ax=..., **kwargs): # -> Axes:
|
||||
...
|
||||
|
||||
@_deprecate_positional_args
|
||||
def scatterplot(*, x=..., y=..., hue=..., style=..., size=..., data=..., palette=..., hue_order=..., hue_norm=..., sizes=..., size_order=..., size_norm=..., markers=..., style_order=..., x_bins=..., y_bins=..., units=..., estimator=..., ci=..., n_boot=..., alpha=..., x_jitter=..., y_jitter=..., legend=..., ax=..., **kwargs): # -> Axes:
|
||||
...
|
||||
|
||||
@_deprecate_positional_args
|
||||
def relplot(*, x=..., y=..., hue=..., size=..., style=..., data=..., row=..., col=..., col_wrap=..., row_order=..., col_order=..., palette=..., hue_order=..., hue_norm=..., sizes=..., size_order=..., size_norm=..., markers=..., dashes=..., style_order=..., legend=..., kind=..., height=..., aspect=..., facet_kws=..., units=..., **kwargs): # -> FacetGrid:
|
||||
...
|
||||
|
4
typings/seaborn/tests/__init__.pyi
Normal file
4
typings/seaborn/tests/__init__.pyi
Normal file
|
@ -0,0 +1,4 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
344
typings/seaborn/utils.pyi
Normal file
344
typings/seaborn/utils.pyi
Normal file
|
@ -0,0 +1,344 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
"""Utility functions, mostly for internal use."""
|
||||
__all__ = ["desaturate", "saturate", "set_hls_values", "despine", "get_dataset_names", "get_data_home", "load_dataset"]
|
||||
def sort_df(df, *args, **kwargs):
|
||||
"""Wrapper to handle different pandas sorting API pre/post 0.17."""
|
||||
...
|
||||
|
||||
def ci_to_errsize(cis, heights): # -> NDArray[Unknown]:
|
||||
"""Convert intervals to error arguments relative to plot heights.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cis: 2 x n sequence
|
||||
sequence of confidence interval limits
|
||||
heights : n sequence
|
||||
sequence of plot heights
|
||||
|
||||
Returns
|
||||
-------
|
||||
errsize : 2 x n array
|
||||
sequence of error size relative to height values in correct
|
||||
format as argument for plt.bar
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def pmf_hist(a, bins=...): # -> tuple[ndarray[Any, dtype[Any]], Any, Any]:
|
||||
"""Return arguments to plt.bar for pmf-like histogram of an array.
|
||||
|
||||
DEPRECATED: will be removed in a future version.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a: array-like
|
||||
array to make histogram of
|
||||
bins: int
|
||||
number of bins
|
||||
|
||||
Returns
|
||||
-------
|
||||
x: array
|
||||
left x position of bars
|
||||
h: array
|
||||
height of bars
|
||||
w: float
|
||||
width of bars
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def desaturate(color, prop): # -> tuple[float, float, float]:
|
||||
"""Decrease the saturation channel of a color by some percent.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
color : matplotlib color
|
||||
hex, rgb-tuple, or html color name
|
||||
prop : float
|
||||
saturation channel of color will be multiplied by this value
|
||||
|
||||
Returns
|
||||
-------
|
||||
new_color : rgb tuple
|
||||
desaturated color code in RGB tuple representation
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def saturate(color): # -> tuple[float, float, float]:
|
||||
"""Return a fully saturated color with the same hue.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
color : matplotlib color
|
||||
hex, rgb-tuple, or html color name
|
||||
|
||||
Returns
|
||||
-------
|
||||
new_color : rgb tuple
|
||||
saturated color code in RGB tuple representation
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def set_hls_values(color, h=..., l=..., s=...): # -> tuple[float, float, float]:
|
||||
"""Independently manipulate the h, l, or s channels of a color.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
color : matplotlib color
|
||||
hex, rgb-tuple, or html color name
|
||||
h, l, s : floats between 0 and 1, or None
|
||||
new values for each channel in hls space
|
||||
|
||||
Returns
|
||||
-------
|
||||
new_color : rgb tuple
|
||||
new color code in RGB tuple representation
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def axlabel(xlabel, ylabel, **kwargs): # -> None:
|
||||
"""Grab current axis and label it.
|
||||
|
||||
DEPRECATED: will be removed in a future version.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def remove_na(vector):
|
||||
"""Helper method for removing null values from data vectors.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
vector : vector object
|
||||
Must implement boolean masking with [] subscript syntax.
|
||||
|
||||
Returns
|
||||
-------
|
||||
clean_clean : same type as ``vector``
|
||||
Vector of data with null values removed. May be a copy or a view.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def get_color_cycle(): # -> Any | list[str]:
|
||||
"""Return the list of colors in the current matplotlib color cycle
|
||||
|
||||
Parameters
|
||||
----------
|
||||
None
|
||||
|
||||
Returns
|
||||
-------
|
||||
colors : list
|
||||
List of matplotlib colors in the current cycle, or dark gray if
|
||||
the current color cycle is empty.
|
||||
"""
|
||||
...
|
||||
|
||||
def despine(fig=..., ax=..., top=..., right=..., left=..., bottom=..., offset=..., trim=...): # -> None:
|
||||
"""Remove the top and right spines from plot(s).
|
||||
|
||||
fig : matplotlib figure, optional
|
||||
Figure to despine all axes of, defaults to the current figure.
|
||||
ax : matplotlib axes, optional
|
||||
Specific axes object to despine. Ignored if fig is provided.
|
||||
top, right, left, bottom : boolean, optional
|
||||
If True, remove that spine.
|
||||
offset : int or dict, optional
|
||||
Absolute distance, in points, spines should be moved away
|
||||
from the axes (negative values move spines inward). A single value
|
||||
applies to all spines; a dict can be used to set offset values per
|
||||
side.
|
||||
trim : bool, optional
|
||||
If True, limit spines to the smallest and largest major tick
|
||||
on each non-despined axis.
|
||||
|
||||
Returns
|
||||
-------
|
||||
None
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def percentiles(a, pcts, axis=...): # -> ndarray[Any, dtype[Unknown]]:
|
||||
"""Like scoreatpercentile but can take and return array of percentiles.
|
||||
|
||||
DEPRECATED: will be removed in a future version.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : array
|
||||
data
|
||||
pcts : sequence of percentile values
|
||||
percentile or percentiles to find score at
|
||||
axis : int or None
|
||||
if not None, computes scores over this axis
|
||||
|
||||
Returns
|
||||
-------
|
||||
scores: array
|
||||
array of scores at requested percentiles
|
||||
first dimension is length of object passed to ``pcts``
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def ci(a, which=..., axis=...):
|
||||
"""Return a percentile range from an array of values."""
|
||||
...
|
||||
|
||||
def sig_stars(p): # -> Literal['***', '**', '*', '.', '']:
|
||||
"""Return a R-style significance string corresponding to p values.
|
||||
|
||||
DEPRECATED: will be removed in a future version.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def iqr(a): # -> float | NDArray[floating[Any]] | Any | NDArray[Any]:
|
||||
"""Calculate the IQR for an array of numbers.
|
||||
|
||||
DEPRECATED: will be removed in a future version.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def get_dataset_names(): # -> list[Any]:
|
||||
"""Report available example datasets, useful for reporting issues.
|
||||
|
||||
Requires an internet connection.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def get_data_home(data_home=...): # -> str:
|
||||
"""Return a path to the cache directory for example datasets.
|
||||
|
||||
This directory is then used by :func:`load_dataset`.
|
||||
|
||||
If the ``data_home`` argument is not specified, it tries to read from the
|
||||
``SEABORN_DATA`` environment variable and defaults to ``~/seaborn-data``.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def load_dataset(name, cache=..., data_home=..., **kws):
|
||||
"""Load an example dataset from the online repository (requires internet).
|
||||
|
||||
This function provides quick access to a small number of example datasets
|
||||
that are useful for documenting seaborn or generating reproducible examples
|
||||
for bug reports. It is not necessary for normal usage.
|
||||
|
||||
Note that some of the datasets have a small amount of preprocessing applied
|
||||
to define a proper ordering for categorical variables.
|
||||
|
||||
Use :func:`get_dataset_names` to see a list of available datasets.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name : str
|
||||
Name of the dataset (``{name}.csv`` on
|
||||
https://github.com/mwaskom/seaborn-data).
|
||||
cache : boolean, optional
|
||||
If True, try to load from the local cache first, and save to the cache
|
||||
if a download is required.
|
||||
data_home : string, optional
|
||||
The directory in which to cache data; see :func:`get_data_home`.
|
||||
kws : keys and values, optional
|
||||
Additional keyword arguments are passed to passed through to
|
||||
:func:`pandas.read_csv`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
df : :class:`pandas.DataFrame`
|
||||
Tabular data, possibly with some preprocessing applied.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def axis_ticklabels_overlap(labels): # -> Literal[False]:
|
||||
"""Return a boolean for whether the list of ticklabels have overlaps.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
labels : list of matplotlib ticklabels
|
||||
|
||||
Returns
|
||||
-------
|
||||
overlap : boolean
|
||||
True if any of the labels overlap.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def axes_ticklabels_overlap(ax): # -> tuple[Unknown | Literal[False], Unknown | Literal[False]]:
|
||||
"""Return booleans for whether the x and y ticklabels on an Axes overlap.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ax : matplotlib Axes
|
||||
|
||||
Returns
|
||||
-------
|
||||
x_overlap, y_overlap : booleans
|
||||
True when the labels on that axis overlap.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def locator_to_legend_entries(locator, limits, dtype): # -> tuple[list[Unknown], list[Unknown]]:
|
||||
"""Return levels and formatted levels for brief numeric legends."""
|
||||
class dummy_axis:
|
||||
...
|
||||
|
||||
|
||||
|
||||
def relative_luminance(color): # -> Any:
|
||||
"""Calculate the relative luminance of a color according to W3C standards
|
||||
|
||||
Parameters
|
||||
----------
|
||||
color : matplotlib color or sequence of matplotlib colors
|
||||
Hex code, rgb-tuple, or html color name.
|
||||
|
||||
Returns
|
||||
-------
|
||||
luminance : float(s) between 0 and 1
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def to_utf8(obj): # -> str:
|
||||
"""Return a string representing a Python object.
|
||||
|
||||
Strings (i.e. type ``str``) are returned unchanged.
|
||||
|
||||
Byte strings (i.e. type ``bytes``) are returned as UTF-8-decoded strings.
|
||||
|
||||
For other objects, the method ``__str__()`` is called, and the result is
|
||||
returned as a string.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
obj : object
|
||||
Any Python object
|
||||
|
||||
Returns
|
||||
-------
|
||||
s : str
|
||||
UTF-8-decoded string representation of ``obj``
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def adjust_legend_subtitles(legend): # -> None:
|
||||
"""Make invisible-handle "subtitles" entries look more like titles."""
|
||||
...
|
||||
|
165
typings/seaborn/widgets.pyi
Normal file
165
typings/seaborn/widgets.pyi
Normal file
|
@ -0,0 +1,165 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
__all__ = ["choose_colorbrewer_palette", "choose_cubehelix_palette", "choose_dark_palette", "choose_light_palette", "choose_diverging_palette"]
|
||||
def choose_colorbrewer_palette(data_type, as_cmap=...): # -> LinearSegmentedColormap | list[Unknown]:
|
||||
"""Select a palette from the ColorBrewer set.
|
||||
|
||||
These palettes are built into matplotlib and can be used by name in
|
||||
many seaborn functions, or by passing the object returned by this function.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data_type : {'sequential', 'diverging', 'qualitative'}
|
||||
This describes the kind of data you want to visualize. See the seaborn
|
||||
color palette docs for more information about how to choose this value.
|
||||
Note that you can pass substrings (e.g. 'q' for 'qualitative.
|
||||
|
||||
as_cmap : bool
|
||||
If True, the return value is a matplotlib colormap rather than a
|
||||
list of discrete colors.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pal or cmap : list of colors or matplotlib colormap
|
||||
Object that can be passed to plotting functions.
|
||||
|
||||
See Also
|
||||
--------
|
||||
dark_palette : Create a sequential palette with dark low values.
|
||||
light_palette : Create a sequential palette with bright low values.
|
||||
diverging_palette : Create a diverging palette from selected colors.
|
||||
cubehelix_palette : Create a sequential palette or colormap using the
|
||||
cubehelix system.
|
||||
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def choose_dark_palette(input=..., as_cmap=...): # -> LinearSegmentedColormap | list[Unknown]:
|
||||
"""Launch an interactive widget to create a dark sequential palette.
|
||||
|
||||
This corresponds with the :func:`dark_palette` function. This kind
|
||||
of palette is good for data that range between relatively uninteresting
|
||||
low values and interesting high values.
|
||||
|
||||
Requires IPython 2+ and must be used in the notebook.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
input : {'husl', 'hls', 'rgb'}
|
||||
Color space for defining the seed value. Note that the default is
|
||||
different than the default input for :func:`dark_palette`.
|
||||
as_cmap : bool
|
||||
If True, the return value is a matplotlib colormap rather than a
|
||||
list of discrete colors.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pal or cmap : list of colors or matplotlib colormap
|
||||
Object that can be passed to plotting functions.
|
||||
|
||||
See Also
|
||||
--------
|
||||
dark_palette : Create a sequential palette with dark low values.
|
||||
light_palette : Create a sequential palette with bright low values.
|
||||
cubehelix_palette : Create a sequential palette or colormap using the
|
||||
cubehelix system.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def choose_light_palette(input=..., as_cmap=...): # -> LinearSegmentedColormap | list[Unknown]:
|
||||
"""Launch an interactive widget to create a light sequential palette.
|
||||
|
||||
This corresponds with the :func:`light_palette` function. This kind
|
||||
of palette is good for data that range between relatively uninteresting
|
||||
low values and interesting high values.
|
||||
|
||||
Requires IPython 2+ and must be used in the notebook.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
input : {'husl', 'hls', 'rgb'}
|
||||
Color space for defining the seed value. Note that the default is
|
||||
different than the default input for :func:`light_palette`.
|
||||
as_cmap : bool
|
||||
If True, the return value is a matplotlib colormap rather than a
|
||||
list of discrete colors.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pal or cmap : list of colors or matplotlib colormap
|
||||
Object that can be passed to plotting functions.
|
||||
|
||||
See Also
|
||||
--------
|
||||
light_palette : Create a sequential palette with bright low values.
|
||||
dark_palette : Create a sequential palette with dark low values.
|
||||
cubehelix_palette : Create a sequential palette or colormap using the
|
||||
cubehelix system.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def choose_diverging_palette(as_cmap=...): # -> LinearSegmentedColormap | list[Unknown]:
|
||||
"""Launch an interactive widget to choose a diverging color palette.
|
||||
|
||||
This corresponds with the :func:`diverging_palette` function. This kind
|
||||
of palette is good for data that range between interesting low values
|
||||
and interesting high values with a meaningful midpoint. (For example,
|
||||
change scores relative to some baseline value).
|
||||
|
||||
Requires IPython 2+ and must be used in the notebook.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
as_cmap : bool
|
||||
If True, the return value is a matplotlib colormap rather than a
|
||||
list of discrete colors.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pal or cmap : list of colors or matplotlib colormap
|
||||
Object that can be passed to plotting functions.
|
||||
|
||||
See Also
|
||||
--------
|
||||
diverging_palette : Create a diverging color palette or colormap.
|
||||
choose_colorbrewer_palette : Interactively choose palettes from the
|
||||
colorbrewer set, including diverging palettes.
|
||||
|
||||
"""
|
||||
...
|
||||
|
||||
def choose_cubehelix_palette(as_cmap=...): # -> LinearSegmentedColormap | list[Unknown]:
|
||||
"""Launch an interactive widget to create a sequential cubehelix palette.
|
||||
|
||||
This corresponds with the :func:`cubehelix_palette` function. This kind
|
||||
of palette is good for data that range between relatively uninteresting
|
||||
low values and interesting high values. The cubehelix system allows the
|
||||
palette to have more hue variance across the range, which can be helpful
|
||||
for distinguishing a wider range of values.
|
||||
|
||||
Requires IPython 2+ and must be used in the notebook.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
as_cmap : bool
|
||||
If True, the return value is a matplotlib colormap rather than a
|
||||
list of discrete colors.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pal or cmap : list of colors or matplotlib colormap
|
||||
Object that can be passed to plotting functions.
|
||||
|
||||
See Also
|
||||
--------
|
||||
cubehelix_palette : Create a sequential palette or colormap using the
|
||||
cubehelix system.
|
||||
|
||||
"""
|
||||
...
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue