Initial configuration commit
This commit is contained in:
commit
31c8abea59
266 changed files with 780274 additions and 0 deletions
33
typings/numpy/lib/__init__.pyi
Normal file
33
typings/numpy/lib/__init__.pyi
Normal file
|
|
@ -0,0 +1,33 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import math as math
|
||||
from typing import Any
|
||||
from numpy._pytesttester import PytestTester
|
||||
from numpy import ndenumerate as ndenumerate, ndindex as ndindex
|
||||
from numpy.version import version
|
||||
from numpy.lib import format as format, mixins as mixins, scimath as scimath, stride_tricks as stride_tricks
|
||||
from numpy.lib._version import NumpyVersion as NumpyVersion
|
||||
from numpy.lib.arraypad import pad as pad
|
||||
from numpy.lib.arraysetops import ediff1d as ediff1d, in1d as in1d, intersect1d as intersect1d, isin as isin, setdiff1d as setdiff1d, setxor1d as setxor1d, union1d as union1d, unique as unique
|
||||
from numpy.lib.arrayterator import Arrayterator as Arrayterator
|
||||
from numpy.lib.function_base import add_docstring as add_docstring, add_newdoc as add_newdoc, add_newdoc_ufunc as add_newdoc_ufunc, angle as angle, append as append, asarray_chkfinite as asarray_chkfinite, average as average, bartlett as bartlett, bincount as bincount, blackman as blackman, copy as copy, corrcoef as corrcoef, cov as cov, delete as delete, diff as diff, digitize as digitize, disp as disp, extract as extract, flip as flip, gradient as gradient, hamming as hamming, hanning as hanning, i0 as i0, insert as insert, interp as interp, iterable as iterable, kaiser as kaiser, median as median, meshgrid as meshgrid, percentile as percentile, piecewise as piecewise, place as place, quantile as quantile, rot90 as rot90, select as select, sinc as sinc, sort_complex as sort_complex, trapz as trapz, trim_zeros as trim_zeros, unwrap as unwrap, vectorize as vectorize
|
||||
from numpy.lib.histograms import histogram as histogram, histogram_bin_edges as histogram_bin_edges, histogramdd as histogramdd
|
||||
from numpy.lib.index_tricks import c_ as c_, diag_indices as diag_indices, diag_indices_from as diag_indices_from, fill_diagonal as fill_diagonal, index_exp as index_exp, ix_ as ix_, mgrid as mgrid, ogrid as ogrid, r_ as r_, ravel_multi_index as ravel_multi_index, s_ as s_, unravel_index as unravel_index
|
||||
from numpy.lib.nanfunctions import nanargmax as nanargmax, nanargmin as nanargmin, nancumprod as nancumprod, nancumsum as nancumsum, nanmax as nanmax, nanmean as nanmean, nanmedian as nanmedian, nanmin as nanmin, nanpercentile as nanpercentile, nanprod as nanprod, nanquantile as nanquantile, nanstd as nanstd, nansum as nansum, nanvar as nanvar
|
||||
from numpy.lib.npyio import DataSource as DataSource, fromregex as fromregex, genfromtxt as genfromtxt, load as load, loadtxt as loadtxt, packbits as packbits, recfromcsv as recfromcsv, recfromtxt as recfromtxt, save as save, savetxt as savetxt, savez as savez, savez_compressed as savez_compressed, unpackbits as unpackbits
|
||||
from numpy.lib.polynomial import RankWarning as RankWarning, poly as poly, poly1d as poly1d, polyadd as polyadd, polyder as polyder, polydiv as polydiv, polyfit as polyfit, polyint as polyint, polymul as polymul, polysub as polysub, polyval as polyval, roots as roots
|
||||
from numpy.lib.shape_base import apply_along_axis as apply_along_axis, apply_over_axes as apply_over_axes, array_split as array_split, column_stack as column_stack, dsplit as dsplit, dstack as dstack, expand_dims as expand_dims, get_array_wrap as get_array_wrap, hsplit as hsplit, kron as kron, put_along_axis as put_along_axis, row_stack as row_stack, split as split, take_along_axis as take_along_axis, tile as tile, vsplit as vsplit
|
||||
from numpy.lib.stride_tricks import broadcast_arrays as broadcast_arrays, broadcast_shapes as broadcast_shapes, broadcast_to as broadcast_to
|
||||
from numpy.lib.twodim_base import diag as diag, diagflat as diagflat, eye as eye, fliplr as fliplr, flipud as flipud, histogram2d as histogram2d, mask_indices as mask_indices, tri as tri, tril as tril, tril_indices as tril_indices, tril_indices_from as tril_indices_from, triu as triu, triu_indices as triu_indices, triu_indices_from as triu_indices_from, vander as vander
|
||||
from numpy.lib.type_check import asfarray as asfarray, common_type as common_type, imag as imag, iscomplex as iscomplex, iscomplexobj as iscomplexobj, isreal as isreal, isrealobj as isrealobj, mintypecode as mintypecode, nan_to_num as nan_to_num, real as real, real_if_close as real_if_close, typename as typename
|
||||
from numpy.lib.ufunclike import fix as fix, isneginf as isneginf, isposinf as isposinf
|
||||
from numpy.lib.utils import byte_bounds as byte_bounds, deprecate as deprecate, deprecate_with_doc as deprecate_with_doc, get_include as get_include, info as info, issubclass_ as issubclass_, issubdtype as issubdtype, issubsctype as issubsctype, lookfor as lookfor, safe_eval as safe_eval, show_runtime as show_runtime, source as source, who as who
|
||||
from numpy.core.multiarray import tracemalloc_domain as tracemalloc_domain
|
||||
|
||||
__all__: list[str]
|
||||
__path__: list[str]
|
||||
test: PytestTester
|
||||
__version__ = ...
|
||||
emath = scimath
|
||||
36
typings/numpy/lib/_version.pyi
Normal file
36
typings/numpy/lib/_version.pyi
Normal file
|
|
@ -0,0 +1,36 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
__all__: list[str]
|
||||
class NumpyVersion:
|
||||
vstring: str
|
||||
version: str
|
||||
major: int
|
||||
minor: int
|
||||
bugfix: int
|
||||
pre_release: str
|
||||
is_devversion: bool
|
||||
def __init__(self, vstring: str) -> None:
|
||||
...
|
||||
|
||||
def __lt__(self, other: str | NumpyVersion) -> bool:
|
||||
...
|
||||
|
||||
def __le__(self, other: str | NumpyVersion) -> bool:
|
||||
...
|
||||
|
||||
def __eq__(self, other: str | NumpyVersion) -> bool:
|
||||
...
|
||||
|
||||
def __ne__(self, other: str | NumpyVersion) -> bool:
|
||||
...
|
||||
|
||||
def __gt__(self, other: str | NumpyVersion) -> bool:
|
||||
...
|
||||
|
||||
def __ge__(self, other: str | NumpyVersion) -> bool:
|
||||
...
|
||||
|
||||
|
||||
|
||||
33
typings/numpy/lib/arraypad.pyi
Normal file
33
typings/numpy/lib/arraypad.pyi
Normal file
|
|
@ -0,0 +1,33 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from typing import Any, Literal as L, Protocol, TypeVar, overload
|
||||
from numpy import generic
|
||||
from numpy._typing import ArrayLike, NDArray, _ArrayLike, _ArrayLikeInt
|
||||
|
||||
_SCT = TypeVar("_SCT", bound=generic)
|
||||
class _ModeFunc(Protocol):
|
||||
def __call__(self, vector: NDArray[Any], iaxis_pad_width: tuple[int, int], iaxis: int, kwargs: dict[str, Any], /) -> None:
|
||||
...
|
||||
|
||||
|
||||
|
||||
_ModeKind = L["constant", "edge", "linear_ramp", "maximum", "mean", "median", "minimum", "reflect", "symmetric", "wrap", "empty",]
|
||||
__all__: list[str]
|
||||
@overload
|
||||
def pad(array: _ArrayLike[_SCT], pad_width: _ArrayLikeInt, mode: _ModeKind = ..., *, stat_length: None | _ArrayLikeInt = ..., constant_values: ArrayLike = ..., end_values: ArrayLike = ..., reflect_type: L["odd", "even"] = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def pad(array: ArrayLike, pad_width: _ArrayLikeInt, mode: _ModeKind = ..., *, stat_length: None | _ArrayLikeInt = ..., constant_values: ArrayLike = ..., end_values: ArrayLike = ..., reflect_type: L["odd", "even"] = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def pad(array: _ArrayLike[_SCT], pad_width: _ArrayLikeInt, mode: _ModeFunc, **kwargs: Any) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def pad(array: ArrayLike, pad_width: _ArrayLikeInt, mode: _ModeFunc, **kwargs: Any) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
142
typings/numpy/lib/arraysetops.pyi
Normal file
142
typings/numpy/lib/arraysetops.pyi
Normal file
|
|
@ -0,0 +1,142 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from typing import Any, Literal as L, SupportsIndex, TypeVar, overload
|
||||
from numpy import bool_, byte, bytes_, cdouble, clongdouble, csingle, datetime64, double, generic, half, int8, int_, intc, intp, longdouble, longlong, number, object_, short, single, str_, timedelta64, ubyte, uint, uintc, ulonglong, ushort, void
|
||||
from numpy._typing import ArrayLike, NDArray, _ArrayLike, _ArrayLikeBool_co, _ArrayLikeDT64_co, _ArrayLikeNumber_co, _ArrayLikeObject_co, _ArrayLikeTD64_co
|
||||
|
||||
_SCT = TypeVar("_SCT", bound=generic)
|
||||
_NumberType = TypeVar("_NumberType", bound=number[Any])
|
||||
_SCTNoCast = TypeVar("_SCTNoCast", bool_, ushort, ubyte, uintc, uint, ulonglong, short, byte, intc, int_, longlong, half, single, double, longdouble, csingle, cdouble, clongdouble, timedelta64, datetime64, object_, str_, bytes_, void)
|
||||
__all__: list[str]
|
||||
@overload
|
||||
def ediff1d(ary: _ArrayLikeBool_co, to_end: None | ArrayLike = ..., to_begin: None | ArrayLike = ...) -> NDArray[int8]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def ediff1d(ary: _ArrayLike[_NumberType], to_end: None | ArrayLike = ..., to_begin: None | ArrayLike = ...) -> NDArray[_NumberType]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def ediff1d(ary: _ArrayLikeNumber_co, to_end: None | ArrayLike = ..., to_begin: None | ArrayLike = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def ediff1d(ary: _ArrayLikeDT64_co | _ArrayLikeTD64_co, to_end: None | ArrayLike = ..., to_begin: None | ArrayLike = ...) -> NDArray[timedelta64]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def ediff1d(ary: _ArrayLikeObject_co, to_end: None | ArrayLike = ..., to_begin: None | ArrayLike = ...) -> NDArray[object_]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def unique(ar: _ArrayLike[_SCT], return_index: L[False] = ..., return_inverse: L[False] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def unique(ar: ArrayLike, return_index: L[False] = ..., return_inverse: L[False] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def unique(ar: _ArrayLike[_SCT], return_index: L[True] = ..., return_inverse: L[False] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ...) -> tuple[NDArray[_SCT], NDArray[intp]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def unique(ar: ArrayLike, return_index: L[True] = ..., return_inverse: L[False] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ...) -> tuple[NDArray[Any], NDArray[intp]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def unique(ar: _ArrayLike[_SCT], return_index: L[False] = ..., return_inverse: L[True] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ...) -> tuple[NDArray[_SCT], NDArray[intp]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def unique(ar: ArrayLike, return_index: L[False] = ..., return_inverse: L[True] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ...) -> tuple[NDArray[Any], NDArray[intp]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def unique(ar: _ArrayLike[_SCT], return_index: L[False] = ..., return_inverse: L[False] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ...) -> tuple[NDArray[_SCT], NDArray[intp]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def unique(ar: ArrayLike, return_index: L[False] = ..., return_inverse: L[False] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ...) -> tuple[NDArray[Any], NDArray[intp]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def unique(ar: _ArrayLike[_SCT], return_index: L[True] = ..., return_inverse: L[True] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ...) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def unique(ar: ArrayLike, return_index: L[True] = ..., return_inverse: L[True] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ...) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def unique(ar: _ArrayLike[_SCT], return_index: L[True] = ..., return_inverse: L[False] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ...) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def unique(ar: ArrayLike, return_index: L[True] = ..., return_inverse: L[False] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ...) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def unique(ar: _ArrayLike[_SCT], return_index: L[False] = ..., return_inverse: L[True] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ...) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def unique(ar: ArrayLike, return_index: L[False] = ..., return_inverse: L[True] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ...) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def unique(ar: _ArrayLike[_SCT], return_index: L[True] = ..., return_inverse: L[True] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ...) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp], NDArray[intp]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def unique(ar: ArrayLike, return_index: L[True] = ..., return_inverse: L[True] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ...) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp], NDArray[intp]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def intersect1d(ar1: _ArrayLike[_SCTNoCast], ar2: _ArrayLike[_SCTNoCast], assume_unique: bool = ..., return_indices: L[False] = ...) -> NDArray[_SCTNoCast]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def intersect1d(ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = ..., return_indices: L[False] = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def intersect1d(ar1: _ArrayLike[_SCTNoCast], ar2: _ArrayLike[_SCTNoCast], assume_unique: bool = ..., return_indices: L[True] = ...) -> tuple[NDArray[_SCTNoCast], NDArray[intp], NDArray[intp]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def intersect1d(ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = ..., return_indices: L[True] = ...) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def setxor1d(ar1: _ArrayLike[_SCTNoCast], ar2: _ArrayLike[_SCTNoCast], assume_unique: bool = ...) -> NDArray[_SCTNoCast]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def setxor1d(ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
def in1d(ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = ..., invert: bool = ...) -> NDArray[bool_]:
|
||||
...
|
||||
|
||||
def isin(element: ArrayLike, test_elements: ArrayLike, assume_unique: bool = ..., invert: bool = ..., *, kind: None | str = ...) -> NDArray[bool_]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def union1d(ar1: _ArrayLike[_SCTNoCast], ar2: _ArrayLike[_SCTNoCast]) -> NDArray[_SCTNoCast]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def union1d(ar1: ArrayLike, ar2: ArrayLike) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def setdiff1d(ar1: _ArrayLike[_SCTNoCast], ar2: _ArrayLike[_SCTNoCast], assume_unique: bool = ...) -> NDArray[_SCTNoCast]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def setdiff1d(ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
47
typings/numpy/lib/arrayterator.pyi
Normal file
47
typings/numpy/lib/arrayterator.pyi
Normal file
|
|
@ -0,0 +1,47 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from collections.abc import Generator
|
||||
from typing import Any, TypeVar, Union, overload
|
||||
from numpy import dtype, generic, ndarray
|
||||
from numpy._typing import DTypeLike
|
||||
|
||||
_Shape = TypeVar("_Shape", bound=Any)
|
||||
_DType = TypeVar("_DType", bound=dtype[Any])
|
||||
_ScalarType = TypeVar("_ScalarType", bound=generic)
|
||||
_Index = Union[Union[ellipsis, int, slice], tuple[Union[ellipsis, int, slice], ...],]
|
||||
__all__: list[str]
|
||||
class Arrayterator(ndarray[_Shape, _DType]):
|
||||
var: ndarray[_Shape, _DType]
|
||||
buf_size: None | int
|
||||
start: list[int]
|
||||
stop: list[int]
|
||||
step: list[int]
|
||||
@property
|
||||
def shape(self) -> tuple[int, ...]:
|
||||
...
|
||||
|
||||
@property
|
||||
def flat(self: ndarray[Any, dtype[_ScalarType]]) -> Generator[_ScalarType, None, None]:
|
||||
...
|
||||
|
||||
def __init__(self, var: ndarray[_Shape, _DType], buf_size: None | int = ...) -> None:
|
||||
...
|
||||
|
||||
@overload
|
||||
def __array__(self, dtype: None = ...) -> ndarray[Any, _DType]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def __array__(self, dtype: DTypeLike) -> ndarray[Any, dtype[Any]]:
|
||||
...
|
||||
|
||||
def __getitem__(self, index: _Index) -> Arrayterator[Any, _DType]:
|
||||
...
|
||||
|
||||
def __iter__(self) -> Generator[ndarray[Any, _DType], None, None]:
|
||||
...
|
||||
|
||||
|
||||
|
||||
48
typings/numpy/lib/format.pyi
Normal file
48
typings/numpy/lib/format.pyi
Normal file
|
|
@ -0,0 +1,48 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from typing import Final, Literal
|
||||
|
||||
__all__: list[str]
|
||||
EXPECTED_KEYS: Final[set[str]]
|
||||
MAGIC_PREFIX: Final[bytes]
|
||||
MAGIC_LEN: Literal[8]
|
||||
ARRAY_ALIGN: Literal[64]
|
||||
BUFFER_SIZE: Literal[262144]
|
||||
def magic(major, minor):
|
||||
...
|
||||
|
||||
def read_magic(fp):
|
||||
...
|
||||
|
||||
def dtype_to_descr(dtype):
|
||||
...
|
||||
|
||||
def descr_to_dtype(descr):
|
||||
...
|
||||
|
||||
def header_data_from_array_1_0(array):
|
||||
...
|
||||
|
||||
def write_array_header_1_0(fp, d):
|
||||
...
|
||||
|
||||
def write_array_header_2_0(fp, d):
|
||||
...
|
||||
|
||||
def read_array_header_1_0(fp):
|
||||
...
|
||||
|
||||
def read_array_header_2_0(fp):
|
||||
...
|
||||
|
||||
def write_array(fp, array, version=..., allow_pickle=..., pickle_kwargs=...):
|
||||
...
|
||||
|
||||
def read_array(fp, allow_pickle=..., pickle_kwargs=...):
|
||||
...
|
||||
|
||||
def open_memmap(filename, mode=..., dtype=..., shape=..., fortran_order=..., version=...):
|
||||
...
|
||||
|
||||
382
typings/numpy/lib/function_base.pyi
Normal file
382
typings/numpy/lib/function_base.pyi
Normal file
|
|
@ -0,0 +1,382 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import sys
|
||||
from collections.abc import Callable, Iterable, Iterator, Sequence
|
||||
from typing import Any, Literal as L, Protocol, SupportsIndex, SupportsInt, TypeGuard, TypeVar, overload
|
||||
from numpy import _OrderKACF, complex128, complexfloating, datetime64, float64, floating, generic, intp, object_, timedelta64, ufunc
|
||||
from numpy._typing import ArrayLike, DTypeLike, NDArray, _ArrayLike, _ArrayLikeComplex_co, _ArrayLikeDT64_co, _ArrayLikeFloat_co, _ArrayLikeInt_co, _ArrayLikeObject_co, _ArrayLikeTD64_co, _ComplexLike_co, _DTypeLike, _FloatLike_co, _ScalarLike_co, _ShapeLike
|
||||
|
||||
if sys.version_info >= (3, 10):
|
||||
...
|
||||
else:
|
||||
...
|
||||
_T = TypeVar("_T")
|
||||
_T_co = TypeVar("_T_co", covariant=True)
|
||||
_SCT = TypeVar("_SCT", bound=generic)
|
||||
_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])
|
||||
_2Tuple = tuple[_T, _T]
|
||||
class _TrimZerosSequence(Protocol[_T_co]):
|
||||
def __len__(self) -> int:
|
||||
...
|
||||
|
||||
def __getitem__(self, key: slice, /) -> _T_co:
|
||||
...
|
||||
|
||||
def __iter__(self) -> Iterator[Any]:
|
||||
...
|
||||
|
||||
|
||||
|
||||
class _SupportsWriteFlush(Protocol):
|
||||
def write(self, s: str, /) -> object:
|
||||
...
|
||||
|
||||
def flush(self) -> object:
|
||||
...
|
||||
|
||||
|
||||
|
||||
__all__: list[str]
|
||||
def add_newdoc_ufunc(ufunc: ufunc, new_docstring: str, /) -> None:
|
||||
...
|
||||
|
||||
@overload
|
||||
def rot90(m: _ArrayLike[_SCT], k: int = ..., axes: tuple[int, int] = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def rot90(m: ArrayLike, k: int = ..., axes: tuple[int, int] = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def flip(m: _SCT, axis: None = ...) -> _SCT:
|
||||
...
|
||||
|
||||
@overload
|
||||
def flip(m: _ScalarLike_co, axis: None = ...) -> Any:
|
||||
...
|
||||
|
||||
@overload
|
||||
def flip(m: _ArrayLike[_SCT], axis: None | _ShapeLike = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def flip(m: ArrayLike, axis: None | _ShapeLike = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
def iterable(y: object) -> TypeGuard[Iterable[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def average(a: _ArrayLikeFloat_co, axis: None = ..., weights: None | _ArrayLikeFloat_co = ..., returned: L[False] = ..., keepdims: L[False] = ...) -> floating[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def average(a: _ArrayLikeComplex_co, axis: None = ..., weights: None | _ArrayLikeComplex_co = ..., returned: L[False] = ..., keepdims: L[False] = ...) -> complexfloating[Any, Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def average(a: _ArrayLikeObject_co, axis: None = ..., weights: None | Any = ..., returned: L[False] = ..., keepdims: L[False] = ...) -> Any:
|
||||
...
|
||||
|
||||
@overload
|
||||
def average(a: _ArrayLikeFloat_co, axis: None = ..., weights: None | _ArrayLikeFloat_co = ..., returned: L[True] = ..., keepdims: L[False] = ...) -> _2Tuple[floating[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def average(a: _ArrayLikeComplex_co, axis: None = ..., weights: None | _ArrayLikeComplex_co = ..., returned: L[True] = ..., keepdims: L[False] = ...) -> _2Tuple[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def average(a: _ArrayLikeObject_co, axis: None = ..., weights: None | Any = ..., returned: L[True] = ..., keepdims: L[False] = ...) -> _2Tuple[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def average(a: _ArrayLikeComplex_co | _ArrayLikeObject_co, axis: None | _ShapeLike = ..., weights: None | Any = ..., returned: L[False] = ..., keepdims: bool = ...) -> Any:
|
||||
...
|
||||
|
||||
@overload
|
||||
def average(a: _ArrayLikeComplex_co | _ArrayLikeObject_co, axis: None | _ShapeLike = ..., weights: None | Any = ..., returned: L[True] = ..., keepdims: bool = ...) -> _2Tuple[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def asarray_chkfinite(a: _ArrayLike[_SCT], dtype: None = ..., order: _OrderKACF = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def asarray_chkfinite(a: object, dtype: None = ..., order: _OrderKACF = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def asarray_chkfinite(a: Any, dtype: _DTypeLike[_SCT], order: _OrderKACF = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def asarray_chkfinite(a: Any, dtype: DTypeLike, order: _OrderKACF = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def piecewise(x: _ArrayLike[_SCT], condlist: ArrayLike, funclist: Sequence[Any | Callable[..., Any]], *args: Any, **kw: Any) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def piecewise(x: ArrayLike, condlist: ArrayLike, funclist: Sequence[Any | Callable[..., Any]], *args: Any, **kw: Any) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
def select(condlist: Sequence[ArrayLike], choicelist: Sequence[ArrayLike], default: ArrayLike = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def copy(a: _ArrayType, order: _OrderKACF, subok: L[True]) -> _ArrayType:
|
||||
...
|
||||
|
||||
@overload
|
||||
def copy(a: _ArrayType, order: _OrderKACF = ..., *, subok: L[True]) -> _ArrayType:
|
||||
...
|
||||
|
||||
@overload
|
||||
def copy(a: _ArrayLike[_SCT], order: _OrderKACF = ..., subok: L[False] = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def copy(a: ArrayLike, order: _OrderKACF = ..., subok: L[False] = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
def gradient(f: ArrayLike, *varargs: ArrayLike, axis: None | _ShapeLike = ..., edge_order: L[1, 2] = ...) -> Any:
|
||||
...
|
||||
|
||||
@overload
|
||||
def diff(a: _T, n: L[0], axis: SupportsIndex = ..., prepend: ArrayLike = ..., append: ArrayLike = ...) -> _T:
|
||||
...
|
||||
|
||||
@overload
|
||||
def diff(a: ArrayLike, n: int = ..., axis: SupportsIndex = ..., prepend: ArrayLike = ..., append: ArrayLike = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def interp(x: _ArrayLikeFloat_co, xp: _ArrayLikeFloat_co, fp: _ArrayLikeFloat_co, left: None | _FloatLike_co = ..., right: None | _FloatLike_co = ..., period: None | _FloatLike_co = ...) -> NDArray[float64]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def interp(x: _ArrayLikeFloat_co, xp: _ArrayLikeFloat_co, fp: _ArrayLikeComplex_co, left: None | _ComplexLike_co = ..., right: None | _ComplexLike_co = ..., period: None | _FloatLike_co = ...) -> NDArray[complex128]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def angle(z: _ComplexLike_co, deg: bool = ...) -> floating[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def angle(z: object_, deg: bool = ...) -> Any:
|
||||
...
|
||||
|
||||
@overload
|
||||
def angle(z: _ArrayLikeComplex_co, deg: bool = ...) -> NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def angle(z: _ArrayLikeObject_co, deg: bool = ...) -> NDArray[object_]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def unwrap(p: _ArrayLikeFloat_co, discont: None | float = ..., axis: int = ..., *, period: float = ...) -> NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def unwrap(p: _ArrayLikeObject_co, discont: None | float = ..., axis: int = ..., *, period: float = ...) -> NDArray[object_]:
|
||||
...
|
||||
|
||||
def sort_complex(a: ArrayLike) -> NDArray[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
def trim_zeros(filt: _TrimZerosSequence[_T], trim: L["f", "b", "fb", "bf"] = ...) -> _T:
|
||||
...
|
||||
|
||||
@overload
|
||||
def extract(condition: ArrayLike, arr: _ArrayLike[_SCT]) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def extract(condition: ArrayLike, arr: ArrayLike) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
def place(arr: NDArray[Any], mask: ArrayLike, vals: Any) -> None:
|
||||
...
|
||||
|
||||
def disp(mesg: object, device: None | _SupportsWriteFlush = ..., linefeed: bool = ...) -> None:
|
||||
...
|
||||
|
||||
@overload
|
||||
def cov(m: _ArrayLikeFloat_co, y: None | _ArrayLikeFloat_co = ..., rowvar: bool = ..., bias: bool = ..., ddof: None | SupportsIndex | SupportsInt = ..., fweights: None | ArrayLike = ..., aweights: None | ArrayLike = ..., *, dtype: None = ...) -> NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def cov(m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., bias: bool = ..., ddof: None | SupportsIndex | SupportsInt = ..., fweights: None | ArrayLike = ..., aweights: None | ArrayLike = ..., *, dtype: None = ...) -> NDArray[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def cov(m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., bias: bool = ..., ddof: None | SupportsIndex | SupportsInt = ..., fweights: None | ArrayLike = ..., aweights: None | ArrayLike = ..., *, dtype: _DTypeLike[_SCT]) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def cov(m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., bias: bool = ..., ddof: None | SupportsIndex | SupportsInt = ..., fweights: None | ArrayLike = ..., aweights: None | ArrayLike = ..., *, dtype: DTypeLike) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def corrcoef(m: _ArrayLikeFloat_co, y: None | _ArrayLikeFloat_co = ..., rowvar: bool = ..., *, dtype: None = ...) -> NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def corrcoef(m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., *, dtype: None = ...) -> NDArray[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def corrcoef(m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., *, dtype: _DTypeLike[_SCT]) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def corrcoef(m: _ArrayLikeComplex_co, y: None | _ArrayLikeComplex_co = ..., rowvar: bool = ..., *, dtype: DTypeLike) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
def blackman(M: _FloatLike_co) -> NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
def bartlett(M: _FloatLike_co) -> NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
def hanning(M: _FloatLike_co) -> NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
def hamming(M: _FloatLike_co) -> NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
def i0(x: _ArrayLikeFloat_co) -> NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
def kaiser(M: _FloatLike_co, beta: _FloatLike_co) -> NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def sinc(x: _FloatLike_co) -> floating[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def sinc(x: _ComplexLike_co) -> complexfloating[Any, Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def sinc(x: _ArrayLikeFloat_co) -> NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def sinc(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def median(a: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., keepdims: L[False] = ...) -> floating[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def median(a: _ArrayLikeComplex_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., keepdims: L[False] = ...) -> complexfloating[Any, Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def median(a: _ArrayLikeTD64_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., keepdims: L[False] = ...) -> timedelta64:
|
||||
...
|
||||
|
||||
@overload
|
||||
def median(a: _ArrayLikeObject_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., keepdims: L[False] = ...) -> Any:
|
||||
...
|
||||
|
||||
@overload
|
||||
def median(a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, axis: None | _ShapeLike = ..., out: None = ..., overwrite_input: bool = ..., keepdims: bool = ...) -> Any:
|
||||
...
|
||||
|
||||
@overload
|
||||
def median(a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, axis: None | _ShapeLike = ..., out: _ArrayType = ..., overwrite_input: bool = ..., keepdims: bool = ...) -> _ArrayType:
|
||||
...
|
||||
|
||||
_MethodKind = L["inverted_cdf", "averaged_inverted_cdf", "closest_observation", "interpolated_inverted_cdf", "hazen", "weibull", "linear", "median_unbiased", "normal_unbiased", "lower", "higher", "midpoint", "nearest",]
|
||||
@overload
|
||||
def percentile(a: _ArrayLikeFloat_co, q: _FloatLike_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> floating[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def percentile(a: _ArrayLikeComplex_co, q: _FloatLike_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> complexfloating[Any, Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def percentile(a: _ArrayLikeTD64_co, q: _FloatLike_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> timedelta64:
|
||||
...
|
||||
|
||||
@overload
|
||||
def percentile(a: _ArrayLikeDT64_co, q: _FloatLike_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> datetime64:
|
||||
...
|
||||
|
||||
@overload
|
||||
def percentile(a: _ArrayLikeObject_co, q: _FloatLike_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> Any:
|
||||
...
|
||||
|
||||
@overload
|
||||
def percentile(a: _ArrayLikeFloat_co, q: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def percentile(a: _ArrayLikeComplex_co, q: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> NDArray[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def percentile(a: _ArrayLikeTD64_co, q: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> NDArray[timedelta64]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def percentile(a: _ArrayLikeDT64_co, q: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> NDArray[datetime64]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def percentile(a: _ArrayLikeObject_co, q: _ArrayLikeFloat_co, axis: None = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: L[False] = ...) -> NDArray[object_]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def percentile(a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, q: _ArrayLikeFloat_co, axis: None | _ShapeLike = ..., out: None = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: bool = ...) -> Any:
|
||||
...
|
||||
|
||||
@overload
|
||||
def percentile(a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, q: _ArrayLikeFloat_co, axis: None | _ShapeLike = ..., out: _ArrayType = ..., overwrite_input: bool = ..., method: _MethodKind = ..., keepdims: bool = ...) -> _ArrayType:
|
||||
...
|
||||
|
||||
quantile = ...
|
||||
def trapz(y: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, x: None | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co = ..., dx: float = ..., axis: SupportsIndex = ...) -> Any:
|
||||
...
|
||||
|
||||
def meshgrid(*xi: ArrayLike, copy: bool = ..., sparse: bool = ..., indexing: L["xy", "ij"] = ...) -> list[NDArray[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def delete(arr: _ArrayLike[_SCT], obj: slice | _ArrayLikeInt_co, axis: None | SupportsIndex = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def delete(arr: ArrayLike, obj: slice | _ArrayLikeInt_co, axis: None | SupportsIndex = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def insert(arr: _ArrayLike[_SCT], obj: slice | _ArrayLikeInt_co, values: ArrayLike, axis: None | SupportsIndex = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def insert(arr: ArrayLike, obj: slice | _ArrayLikeInt_co, values: ArrayLike, axis: None | SupportsIndex = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
def append(arr: ArrayLike, values: ArrayLike, axis: None | SupportsIndex = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def digitize(x: _FloatLike_co, bins: _ArrayLikeFloat_co, right: bool = ...) -> intp:
|
||||
...
|
||||
|
||||
@overload
|
||||
def digitize(x: _ArrayLikeFloat_co, bins: _ArrayLikeFloat_co, right: bool = ...) -> NDArray[intp]:
|
||||
...
|
||||
|
||||
19
typings/numpy/lib/histograms.pyi
Normal file
19
typings/numpy/lib/histograms.pyi
Normal file
|
|
@ -0,0 +1,19 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from collections.abc import Sequence
|
||||
from typing import Any, Literal as L, SupportsIndex
|
||||
from numpy._typing import ArrayLike, NDArray
|
||||
|
||||
_BinKind = L["stone", "auto", "doane", "fd", "rice", "scott", "sqrt", "sturges",]
|
||||
__all__: list[str]
|
||||
def histogram_bin_edges(a: ArrayLike, bins: _BinKind | SupportsIndex | ArrayLike = ..., range: None | tuple[float, float] = ..., weights: None | ArrayLike = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
def histogram(a: ArrayLike, bins: _BinKind | SupportsIndex | ArrayLike = ..., range: None | tuple[float, float] = ..., density: bool = ..., weights: None | ArrayLike = ...) -> tuple[NDArray[Any], NDArray[Any]]:
|
||||
...
|
||||
|
||||
def histogramdd(sample: ArrayLike, bins: SupportsIndex | ArrayLike = ..., range: Sequence[tuple[float, float]] = ..., density: None | bool = ..., weights: None | ArrayLike = ...) -> tuple[NDArray[Any], list[NDArray[Any]]]:
|
||||
...
|
||||
|
||||
151
typings/numpy/lib/index_tricks.pyi
Normal file
151
typings/numpy/lib/index_tricks.pyi
Normal file
|
|
@ -0,0 +1,151 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from collections.abc import Sequence
|
||||
from typing import Any, Generic, Literal, SupportsIndex, TypeVar, overload
|
||||
from numpy import bool_, bytes_, complex_, dtype, float_, int_, matrix as _Matrix, ndarray, str_
|
||||
from numpy._typing import ArrayLike, DTypeLike, NDArray, _FiniteNestedSequence, _NestedSequence, _SupportsDType
|
||||
|
||||
_T = TypeVar("_T")
|
||||
_DType = TypeVar("_DType", bound=dtype[Any])
|
||||
_BoolType = TypeVar("_BoolType", Literal[True], Literal[False])
|
||||
_TupType = TypeVar("_TupType", bound=tuple[Any, ...])
|
||||
_ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])
|
||||
__all__: list[str]
|
||||
@overload
|
||||
def ix_(*args: _FiniteNestedSequence[_SupportsDType[_DType]]) -> tuple[ndarray[Any, _DType], ...]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def ix_(*args: str | _NestedSequence[str]) -> tuple[NDArray[str_], ...]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def ix_(*args: bytes | _NestedSequence[bytes]) -> tuple[NDArray[bytes_], ...]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def ix_(*args: bool | _NestedSequence[bool]) -> tuple[NDArray[bool_], ...]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def ix_(*args: int | _NestedSequence[int]) -> tuple[NDArray[int_], ...]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def ix_(*args: float | _NestedSequence[float]) -> tuple[NDArray[float_], ...]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def ix_(*args: complex | _NestedSequence[complex]) -> tuple[NDArray[complex_], ...]:
|
||||
...
|
||||
|
||||
class nd_grid(Generic[_BoolType]):
|
||||
sparse: _BoolType
|
||||
def __init__(self, sparse: _BoolType = ...) -> None:
|
||||
...
|
||||
|
||||
@overload
|
||||
def __getitem__(self: nd_grid[Literal[False]], key: slice | Sequence[slice]) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def __getitem__(self: nd_grid[Literal[True]], key: slice | Sequence[slice]) -> list[NDArray[Any]]:
|
||||
...
|
||||
|
||||
|
||||
|
||||
class MGridClass(nd_grid[Literal[False]]):
|
||||
def __init__(self) -> None:
|
||||
...
|
||||
|
||||
|
||||
|
||||
mgrid: MGridClass
|
||||
class OGridClass(nd_grid[Literal[True]]):
|
||||
def __init__(self) -> None:
|
||||
...
|
||||
|
||||
|
||||
|
||||
ogrid: OGridClass
|
||||
class AxisConcatenator:
|
||||
axis: int
|
||||
matrix: bool
|
||||
ndmin: int
|
||||
trans1d: int
|
||||
def __init__(self, axis: int = ..., matrix: bool = ..., ndmin: int = ..., trans1d: int = ...) -> None:
|
||||
...
|
||||
|
||||
@staticmethod
|
||||
@overload
|
||||
def concatenate(*a: ArrayLike, axis: SupportsIndex = ..., out: None = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@staticmethod
|
||||
@overload
|
||||
def concatenate(*a: ArrayLike, axis: SupportsIndex = ..., out: _ArrayType = ...) -> _ArrayType:
|
||||
...
|
||||
|
||||
@staticmethod
|
||||
def makemat(data: ArrayLike, dtype: DTypeLike = ..., copy: bool = ...) -> _Matrix[Any, Any]:
|
||||
...
|
||||
|
||||
def __getitem__(self, key: Any) -> Any:
|
||||
...
|
||||
|
||||
|
||||
|
||||
class RClass(AxisConcatenator):
|
||||
axis: Literal[0]
|
||||
matrix: Literal[False]
|
||||
ndmin: Literal[1]
|
||||
trans1d: Literal[-1]
|
||||
def __init__(self) -> None:
|
||||
...
|
||||
|
||||
|
||||
|
||||
r_: RClass
|
||||
class CClass(AxisConcatenator):
|
||||
axis: Literal[-1]
|
||||
matrix: Literal[False]
|
||||
ndmin: Literal[2]
|
||||
trans1d: Literal[0]
|
||||
def __init__(self) -> None:
|
||||
...
|
||||
|
||||
|
||||
|
||||
c_: CClass
|
||||
class IndexExpression(Generic[_BoolType]):
|
||||
maketuple: _BoolType
|
||||
def __init__(self, maketuple: _BoolType) -> None:
|
||||
...
|
||||
|
||||
@overload
|
||||
def __getitem__(self, item: _TupType) -> _TupType:
|
||||
...
|
||||
|
||||
@overload
|
||||
def __getitem__(self: IndexExpression[Literal[True]], item: _T) -> tuple[_T]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def __getitem__(self: IndexExpression[Literal[False]], item: _T) -> _T:
|
||||
...
|
||||
|
||||
|
||||
|
||||
index_exp: IndexExpression[Literal[True]]
|
||||
s_: IndexExpression[Literal[False]]
|
||||
def fill_diagonal(a: ndarray[Any, Any], val: Any, wrap: bool = ...) -> None:
|
||||
...
|
||||
|
||||
def diag_indices(n: int, ndim: int = ...) -> tuple[NDArray[int_], ...]:
|
||||
...
|
||||
|
||||
def diag_indices_from(arr: ArrayLike) -> tuple[NDArray[int_], ...]:
|
||||
...
|
||||
|
||||
169
typings/numpy/lib/mixins.pyi
Normal file
169
typings/numpy/lib/mixins.pyi
Normal file
|
|
@ -0,0 +1,169 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from abc import ABCMeta, abstractmethod
|
||||
from typing import Any, Literal as L
|
||||
from numpy import ufunc
|
||||
|
||||
__all__: list[str]
|
||||
class NDArrayOperatorsMixin(metaclass=ABCMeta):
|
||||
@abstractmethod
|
||||
def __array_ufunc__(self, ufunc: ufunc, method: L["__call__", "reduce", "reduceat", "accumulate", "outer", "inner"], *inputs: Any, **kwargs: Any) -> Any:
|
||||
...
|
||||
|
||||
def __lt__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __le__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __eq__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __ne__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __gt__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __ge__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __add__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __radd__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __iadd__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __sub__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __rsub__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __isub__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __mul__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __rmul__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __imul__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __matmul__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __rmatmul__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __imatmul__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __truediv__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __rtruediv__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __itruediv__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __floordiv__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __rfloordiv__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __ifloordiv__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __mod__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __rmod__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __imod__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __divmod__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __rdivmod__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __pow__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __rpow__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __ipow__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __lshift__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __rlshift__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __ilshift__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __rshift__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __rrshift__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __irshift__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __and__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __rand__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __iand__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __xor__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __rxor__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __ixor__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __or__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __ror__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __ior__(self, other: Any) -> Any:
|
||||
...
|
||||
|
||||
def __neg__(self) -> Any:
|
||||
...
|
||||
|
||||
def __pos__(self) -> Any:
|
||||
...
|
||||
|
||||
def __abs__(self) -> Any:
|
||||
...
|
||||
|
||||
def __invert__(self) -> Any:
|
||||
...
|
||||
|
||||
|
||||
|
||||
19
typings/numpy/lib/nanfunctions.pyi
Normal file
19
typings/numpy/lib/nanfunctions.pyi
Normal file
|
|
@ -0,0 +1,19 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
__all__: list[str]
|
||||
nanmin = ...
|
||||
nanmax = ...
|
||||
nanargmin = ...
|
||||
nanargmax = ...
|
||||
nansum = ...
|
||||
nanprod = ...
|
||||
nancumsum = ...
|
||||
nancumprod = ...
|
||||
nanmean = ...
|
||||
nanvar = ...
|
||||
nanstd = ...
|
||||
nanmedian = ...
|
||||
nanpercentile = ...
|
||||
nanquantile = ...
|
||||
170
typings/numpy/lib/npyio.pyi
Normal file
170
typings/numpy/lib/npyio.pyi
Normal file
|
|
@ -0,0 +1,170 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import os
|
||||
import zipfile
|
||||
import types
|
||||
from re import Pattern
|
||||
from collections.abc import Callable, Collection, Iterable, Iterator, Mapping, Sequence
|
||||
from typing import Any, Generic, IO, Literal as L, Protocol, TypeVar, overload
|
||||
from numpy import dtype, float64, generic, recarray, record, void
|
||||
from numpy.ma.mrecords import MaskedRecords
|
||||
from numpy._typing import ArrayLike, DTypeLike, NDArray, _DTypeLike, _SupportsArrayFunc
|
||||
|
||||
_T = TypeVar("_T")
|
||||
_T_contra = TypeVar("_T_contra", contravariant=True)
|
||||
_T_co = TypeVar("_T_co", covariant=True)
|
||||
_SCT = TypeVar("_SCT", bound=generic)
|
||||
_CharType_co = TypeVar("_CharType_co", str, bytes, covariant=True)
|
||||
_CharType_contra = TypeVar("_CharType_contra", str, bytes, contravariant=True)
|
||||
class _SupportsGetItem(Protocol[_T_contra, _T_co]):
|
||||
def __getitem__(self, key: _T_contra, /) -> _T_co:
|
||||
...
|
||||
|
||||
|
||||
|
||||
class _SupportsRead(Protocol[_CharType_co]):
|
||||
def read(self) -> _CharType_co:
|
||||
...
|
||||
|
||||
|
||||
|
||||
class _SupportsReadSeek(Protocol[_CharType_co]):
|
||||
def read(self, n: int, /) -> _CharType_co:
|
||||
...
|
||||
|
||||
def seek(self, offset: int, whence: int, /) -> object:
|
||||
...
|
||||
|
||||
|
||||
|
||||
class _SupportsWrite(Protocol[_CharType_contra]):
|
||||
def write(self, s: _CharType_contra, /) -> object:
|
||||
...
|
||||
|
||||
|
||||
|
||||
__all__: list[str]
|
||||
class BagObj(Generic[_T_co]):
|
||||
def __init__(self, obj: _SupportsGetItem[str, _T_co]) -> None:
|
||||
...
|
||||
|
||||
def __getattribute__(self, key: str) -> _T_co:
|
||||
...
|
||||
|
||||
def __dir__(self) -> list[str]:
|
||||
...
|
||||
|
||||
|
||||
|
||||
class NpzFile(Mapping[str, NDArray[Any]]):
|
||||
zip: zipfile.ZipFile
|
||||
fid: None | IO[str]
|
||||
files: list[str]
|
||||
allow_pickle: bool
|
||||
pickle_kwargs: None | Mapping[str, Any]
|
||||
_MAX_REPR_ARRAY_COUNT: int
|
||||
@property
|
||||
def f(self: _T) -> BagObj[_T]:
|
||||
...
|
||||
|
||||
@f.setter
|
||||
def f(self: _T, value: BagObj[_T]) -> None:
|
||||
...
|
||||
|
||||
def __init__(self, fid: IO[str], own_fid: bool = ..., allow_pickle: bool = ..., pickle_kwargs: None | Mapping[str, Any] = ...) -> None:
|
||||
...
|
||||
|
||||
def __enter__(self: _T) -> _T:
|
||||
...
|
||||
|
||||
def __exit__(self, exc_type: None | type[BaseException], exc_value: None | BaseException, traceback: None | types.TracebackType, /) -> None:
|
||||
...
|
||||
|
||||
def close(self) -> None:
|
||||
...
|
||||
|
||||
def __del__(self) -> None:
|
||||
...
|
||||
|
||||
def __iter__(self) -> Iterator[str]:
|
||||
...
|
||||
|
||||
def __len__(self) -> int:
|
||||
...
|
||||
|
||||
def __getitem__(self, key: str) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
def __contains__(self, key: str) -> bool:
|
||||
...
|
||||
|
||||
def __repr__(self) -> str:
|
||||
...
|
||||
|
||||
|
||||
|
||||
def load(file: str | bytes | os.PathLike[Any] | _SupportsReadSeek[bytes], mmap_mode: L[None, "r+", "r", "w+", "c"] = ..., allow_pickle: bool = ..., fix_imports: bool = ..., encoding: L["ASCII", "latin1", "bytes"] = ...) -> Any:
|
||||
...
|
||||
|
||||
def save(file: str | os.PathLike[str] | _SupportsWrite[bytes], arr: ArrayLike, allow_pickle: bool = ..., fix_imports: bool = ...) -> None:
|
||||
...
|
||||
|
||||
def savez(file: str | os.PathLike[str] | _SupportsWrite[bytes], *args: ArrayLike, **kwds: ArrayLike) -> None:
|
||||
...
|
||||
|
||||
def savez_compressed(file: str | os.PathLike[str] | _SupportsWrite[bytes], *args: ArrayLike, **kwds: ArrayLike) -> None:
|
||||
...
|
||||
|
||||
@overload
|
||||
def loadtxt(fname: str | os.PathLike[str] | Iterable[str] | Iterable[bytes], dtype: None = ..., comments: None | str | Sequence[str] = ..., delimiter: None | str = ..., converters: None | Mapping[int | str, Callable[[str], Any]] = ..., skiprows: int = ..., usecols: int | Sequence[int] = ..., unpack: bool = ..., ndmin: L[0, 1, 2] = ..., encoding: None | str = ..., max_rows: None | int = ..., *, quotechar: None | str = ..., like: None | _SupportsArrayFunc = ...) -> NDArray[float64]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def loadtxt(fname: str | os.PathLike[str] | Iterable[str] | Iterable[bytes], dtype: _DTypeLike[_SCT], comments: None | str | Sequence[str] = ..., delimiter: None | str = ..., converters: None | Mapping[int | str, Callable[[str], Any]] = ..., skiprows: int = ..., usecols: int | Sequence[int] = ..., unpack: bool = ..., ndmin: L[0, 1, 2] = ..., encoding: None | str = ..., max_rows: None | int = ..., *, quotechar: None | str = ..., like: None | _SupportsArrayFunc = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def loadtxt(fname: str | os.PathLike[str] | Iterable[str] | Iterable[bytes], dtype: DTypeLike, comments: None | str | Sequence[str] = ..., delimiter: None | str = ..., converters: None | Mapping[int | str, Callable[[str], Any]] = ..., skiprows: int = ..., usecols: int | Sequence[int] = ..., unpack: bool = ..., ndmin: L[0, 1, 2] = ..., encoding: None | str = ..., max_rows: None | int = ..., *, quotechar: None | str = ..., like: None | _SupportsArrayFunc = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
def savetxt(fname: str | os.PathLike[str] | _SupportsWrite[str] | _SupportsWrite[bytes], X: ArrayLike, fmt: str | Sequence[str] = ..., delimiter: str = ..., newline: str = ..., header: str = ..., footer: str = ..., comments: str = ..., encoding: None | str = ...) -> None:
|
||||
...
|
||||
|
||||
@overload
|
||||
def fromregex(file: str | os.PathLike[str] | _SupportsRead[str] | _SupportsRead[bytes], regexp: str | bytes | Pattern[Any], dtype: _DTypeLike[_SCT], encoding: None | str = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def fromregex(file: str | os.PathLike[str] | _SupportsRead[str] | _SupportsRead[bytes], regexp: str | bytes | Pattern[Any], dtype: DTypeLike, encoding: None | str = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def genfromtxt(fname: str | os.PathLike[str] | Iterable[str] | Iterable[bytes], dtype: None = ..., comments: str = ..., delimiter: None | str | int | Iterable[int] = ..., skip_header: int = ..., skip_footer: int = ..., converters: None | Mapping[int | str, Callable[[str], Any]] = ..., missing_values: Any = ..., filling_values: Any = ..., usecols: None | Sequence[int] = ..., names: L[None, True] | str | Collection[str] = ..., excludelist: None | Sequence[str] = ..., deletechars: str = ..., replace_space: str = ..., autostrip: bool = ..., case_sensitive: bool | L['upper', 'lower'] = ..., defaultfmt: str = ..., unpack: None | bool = ..., usemask: bool = ..., loose: bool = ..., invalid_raise: bool = ..., max_rows: None | int = ..., encoding: str = ..., *, ndmin: L[0, 1, 2] = ..., like: None | _SupportsArrayFunc = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def genfromtxt(fname: str | os.PathLike[str] | Iterable[str] | Iterable[bytes], dtype: _DTypeLike[_SCT], comments: str = ..., delimiter: None | str | int | Iterable[int] = ..., skip_header: int = ..., skip_footer: int = ..., converters: None | Mapping[int | str, Callable[[str], Any]] = ..., missing_values: Any = ..., filling_values: Any = ..., usecols: None | Sequence[int] = ..., names: L[None, True] | str | Collection[str] = ..., excludelist: None | Sequence[str] = ..., deletechars: str = ..., replace_space: str = ..., autostrip: bool = ..., case_sensitive: bool | L['upper', 'lower'] = ..., defaultfmt: str = ..., unpack: None | bool = ..., usemask: bool = ..., loose: bool = ..., invalid_raise: bool = ..., max_rows: None | int = ..., encoding: str = ..., *, ndmin: L[0, 1, 2] = ..., like: None | _SupportsArrayFunc = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def genfromtxt(fname: str | os.PathLike[str] | Iterable[str] | Iterable[bytes], dtype: DTypeLike, comments: str = ..., delimiter: None | str | int | Iterable[int] = ..., skip_header: int = ..., skip_footer: int = ..., converters: None | Mapping[int | str, Callable[[str], Any]] = ..., missing_values: Any = ..., filling_values: Any = ..., usecols: None | Sequence[int] = ..., names: L[None, True] | str | Collection[str] = ..., excludelist: None | Sequence[str] = ..., deletechars: str = ..., replace_space: str = ..., autostrip: bool = ..., case_sensitive: bool | L['upper', 'lower'] = ..., defaultfmt: str = ..., unpack: None | bool = ..., usemask: bool = ..., loose: bool = ..., invalid_raise: bool = ..., max_rows: None | int = ..., encoding: str = ..., *, ndmin: L[0, 1, 2] = ..., like: None | _SupportsArrayFunc = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def recfromtxt(fname: str | os.PathLike[str] | Iterable[str] | Iterable[bytes], *, usemask: L[False] = ..., **kwargs: Any) -> recarray[Any, dtype[record]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def recfromtxt(fname: str | os.PathLike[str] | Iterable[str] | Iterable[bytes], *, usemask: L[True], **kwargs: Any) -> MaskedRecords[Any, dtype[void]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def recfromcsv(fname: str | os.PathLike[str] | Iterable[str] | Iterable[bytes], *, usemask: L[False] = ..., **kwargs: Any) -> recarray[Any, dtype[record]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def recfromcsv(fname: str | os.PathLike[str] | Iterable[str] | Iterable[bytes], *, usemask: L[True], **kwargs: Any) -> MaskedRecords[Any, dtype[void]]:
|
||||
...
|
||||
|
||||
183
typings/numpy/lib/polynomial.pyi
Normal file
183
typings/numpy/lib/polynomial.pyi
Normal file
|
|
@ -0,0 +1,183 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from typing import Any, Literal as L, NoReturn, SupportsIndex, SupportsInt, TypeVar, overload
|
||||
from numpy import bool_, complex128, complexfloating, float64, floating, int32, int64, object_, poly1d as poly1d, signedinteger, unsignedinteger
|
||||
from numpy._typing import ArrayLike, NDArray, _ArrayLikeBool_co, _ArrayLikeComplex_co, _ArrayLikeFloat_co, _ArrayLikeInt_co, _ArrayLikeObject_co, _ArrayLikeUInt_co
|
||||
|
||||
_T = TypeVar("_T")
|
||||
_2Tup = tuple[_T, _T]
|
||||
_5Tup = tuple[_T, NDArray[float64], NDArray[int32], NDArray[float64], NDArray[float64],]
|
||||
__all__: list[str]
|
||||
def poly(seq_of_zeros: ArrayLike) -> NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
def roots(p: ArrayLike) -> NDArray[complexfloating[Any, Any]] | NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyint(p: poly1d, m: SupportsInt | SupportsIndex = ..., k: None | _ArrayLikeComplex_co | _ArrayLikeObject_co = ...) -> poly1d:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyint(p: _ArrayLikeFloat_co, m: SupportsInt | SupportsIndex = ..., k: None | _ArrayLikeFloat_co = ...) -> NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyint(p: _ArrayLikeComplex_co, m: SupportsInt | SupportsIndex = ..., k: None | _ArrayLikeComplex_co = ...) -> NDArray[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyint(p: _ArrayLikeObject_co, m: SupportsInt | SupportsIndex = ..., k: None | _ArrayLikeObject_co = ...) -> NDArray[object_]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyder(p: poly1d, m: SupportsInt | SupportsIndex = ...) -> poly1d:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyder(p: _ArrayLikeFloat_co, m: SupportsInt | SupportsIndex = ...) -> NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyder(p: _ArrayLikeComplex_co, m: SupportsInt | SupportsIndex = ...) -> NDArray[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyder(p: _ArrayLikeObject_co, m: SupportsInt | SupportsIndex = ...) -> NDArray[object_]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyfit(x: _ArrayLikeFloat_co, y: _ArrayLikeFloat_co, deg: SupportsIndex | SupportsInt, rcond: None | float = ..., full: L[False] = ..., w: None | _ArrayLikeFloat_co = ..., cov: L[False] = ...) -> NDArray[float64]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyfit(x: _ArrayLikeComplex_co, y: _ArrayLikeComplex_co, deg: SupportsIndex | SupportsInt, rcond: None | float = ..., full: L[False] = ..., w: None | _ArrayLikeFloat_co = ..., cov: L[False] = ...) -> NDArray[complex128]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyfit(x: _ArrayLikeFloat_co, y: _ArrayLikeFloat_co, deg: SupportsIndex | SupportsInt, rcond: None | float = ..., full: L[False] = ..., w: None | _ArrayLikeFloat_co = ..., cov: L[True, "unscaled"] = ...) -> _2Tup[NDArray[float64]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyfit(x: _ArrayLikeComplex_co, y: _ArrayLikeComplex_co, deg: SupportsIndex | SupportsInt, rcond: None | float = ..., full: L[False] = ..., w: None | _ArrayLikeFloat_co = ..., cov: L[True, "unscaled"] = ...) -> _2Tup[NDArray[complex128]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyfit(x: _ArrayLikeFloat_co, y: _ArrayLikeFloat_co, deg: SupportsIndex | SupportsInt, rcond: None | float = ..., full: L[True] = ..., w: None | _ArrayLikeFloat_co = ..., cov: bool | L["unscaled"] = ...) -> _5Tup[NDArray[float64]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyfit(x: _ArrayLikeComplex_co, y: _ArrayLikeComplex_co, deg: SupportsIndex | SupportsInt, rcond: None | float = ..., full: L[True] = ..., w: None | _ArrayLikeFloat_co = ..., cov: bool | L["unscaled"] = ...) -> _5Tup[NDArray[complex128]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyval(p: _ArrayLikeBool_co, x: _ArrayLikeBool_co) -> NDArray[int64]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyval(p: _ArrayLikeUInt_co, x: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyval(p: _ArrayLikeInt_co, x: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyval(p: _ArrayLikeFloat_co, x: _ArrayLikeFloat_co) -> NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyval(p: _ArrayLikeComplex_co, x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyval(p: _ArrayLikeObject_co, x: _ArrayLikeObject_co) -> NDArray[object_]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyadd(a1: poly1d, a2: _ArrayLikeComplex_co | _ArrayLikeObject_co) -> poly1d:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyadd(a1: _ArrayLikeComplex_co | _ArrayLikeObject_co, a2: poly1d) -> poly1d:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyadd(a1: _ArrayLikeBool_co, a2: _ArrayLikeBool_co) -> NDArray[bool_]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyadd(a1: _ArrayLikeUInt_co, a2: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyadd(a1: _ArrayLikeInt_co, a2: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyadd(a1: _ArrayLikeFloat_co, a2: _ArrayLikeFloat_co) -> NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyadd(a1: _ArrayLikeComplex_co, a2: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polyadd(a1: _ArrayLikeObject_co, a2: _ArrayLikeObject_co) -> NDArray[object_]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polysub(a1: poly1d, a2: _ArrayLikeComplex_co | _ArrayLikeObject_co) -> poly1d:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polysub(a1: _ArrayLikeComplex_co | _ArrayLikeObject_co, a2: poly1d) -> poly1d:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polysub(a1: _ArrayLikeBool_co, a2: _ArrayLikeBool_co) -> NoReturn:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polysub(a1: _ArrayLikeUInt_co, a2: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polysub(a1: _ArrayLikeInt_co, a2: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polysub(a1: _ArrayLikeFloat_co, a2: _ArrayLikeFloat_co) -> NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polysub(a1: _ArrayLikeComplex_co, a2: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polysub(a1: _ArrayLikeObject_co, a2: _ArrayLikeObject_co) -> NDArray[object_]:
|
||||
...
|
||||
|
||||
polymul = ...
|
||||
@overload
|
||||
def polydiv(u: poly1d, v: _ArrayLikeComplex_co | _ArrayLikeObject_co) -> _2Tup[poly1d]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polydiv(u: _ArrayLikeComplex_co | _ArrayLikeObject_co, v: poly1d) -> _2Tup[poly1d]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polydiv(u: _ArrayLikeFloat_co, v: _ArrayLikeFloat_co) -> _2Tup[NDArray[floating[Any]]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polydiv(u: _ArrayLikeComplex_co, v: _ArrayLikeComplex_co) -> _2Tup[NDArray[complexfloating[Any, Any]]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def polydiv(u: _ArrayLikeObject_co, v: _ArrayLikeObject_co) -> _2Tup[NDArray[Any]]:
|
||||
...
|
||||
|
||||
153
typings/numpy/lib/scimath.pyi
Normal file
153
typings/numpy/lib/scimath.pyi
Normal file
|
|
@ -0,0 +1,153 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from typing import Any, overload
|
||||
from numpy import complexfloating
|
||||
from numpy._typing import NDArray, _ArrayLikeComplex_co, _ArrayLikeFloat_co, _ComplexLike_co, _FloatLike_co
|
||||
|
||||
__all__: list[str]
|
||||
@overload
|
||||
def sqrt(x: _FloatLike_co) -> Any:
|
||||
...
|
||||
|
||||
@overload
|
||||
def sqrt(x: _ComplexLike_co) -> complexfloating[Any, Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def sqrt(x: _ArrayLikeFloat_co) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def sqrt(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def log(x: _FloatLike_co) -> Any:
|
||||
...
|
||||
|
||||
@overload
|
||||
def log(x: _ComplexLike_co) -> complexfloating[Any, Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def log(x: _ArrayLikeFloat_co) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def log(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def log10(x: _FloatLike_co) -> Any:
|
||||
...
|
||||
|
||||
@overload
|
||||
def log10(x: _ComplexLike_co) -> complexfloating[Any, Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def log10(x: _ArrayLikeFloat_co) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def log10(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def log2(x: _FloatLike_co) -> Any:
|
||||
...
|
||||
|
||||
@overload
|
||||
def log2(x: _ComplexLike_co) -> complexfloating[Any, Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def log2(x: _ArrayLikeFloat_co) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def log2(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def logn(n: _FloatLike_co, x: _FloatLike_co) -> Any:
|
||||
...
|
||||
|
||||
@overload
|
||||
def logn(n: _ComplexLike_co, x: _ComplexLike_co) -> complexfloating[Any, Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def logn(n: _ArrayLikeFloat_co, x: _ArrayLikeFloat_co) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def logn(n: _ArrayLikeComplex_co, x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def power(x: _FloatLike_co, p: _FloatLike_co) -> Any:
|
||||
...
|
||||
|
||||
@overload
|
||||
def power(x: _ComplexLike_co, p: _ComplexLike_co) -> complexfloating[Any, Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def power(x: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def power(x: _ArrayLikeComplex_co, p: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def arccos(x: _FloatLike_co) -> Any:
|
||||
...
|
||||
|
||||
@overload
|
||||
def arccos(x: _ComplexLike_co) -> complexfloating[Any, Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def arccos(x: _ArrayLikeFloat_co) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def arccos(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def arcsin(x: _FloatLike_co) -> Any:
|
||||
...
|
||||
|
||||
@overload
|
||||
def arcsin(x: _ComplexLike_co) -> complexfloating[Any, Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def arcsin(x: _ArrayLikeFloat_co) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def arcsin(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def arctanh(x: _FloatLike_co) -> Any:
|
||||
...
|
||||
|
||||
@overload
|
||||
def arctanh(x: _ComplexLike_co) -> complexfloating[Any, Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def arctanh(x: _ArrayLikeFloat_co) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def arctanh(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
177
typings/numpy/lib/shape_base.pyi
Normal file
177
typings/numpy/lib/shape_base.pyi
Normal file
|
|
@ -0,0 +1,177 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
import sys
|
||||
from collections.abc import Callable, Sequence
|
||||
from typing import Any, Concatenate, ParamSpec, Protocol, SupportsIndex, TypeVar, overload
|
||||
from numpy import bool_, complexfloating, floating, generic, integer, object_, signedinteger, ufunc, unsignedinteger
|
||||
from numpy._typing import ArrayLike, NDArray, _ArrayLike, _ArrayLikeBool_co, _ArrayLikeComplex_co, _ArrayLikeFloat_co, _ArrayLikeInt_co, _ArrayLikeObject_co, _ArrayLikeUInt_co, _ShapeLike
|
||||
|
||||
if sys.version_info >= (3, 10):
|
||||
...
|
||||
else:
|
||||
...
|
||||
_P = ParamSpec("_P")
|
||||
_SCT = TypeVar("_SCT", bound=generic)
|
||||
class _ArrayWrap(Protocol):
|
||||
def __call__(self, array: NDArray[Any], context: None | tuple[ufunc, tuple[Any, ...], int] = ..., /) -> Any:
|
||||
...
|
||||
|
||||
|
||||
|
||||
class _ArrayPrepare(Protocol):
|
||||
def __call__(self, array: NDArray[Any], context: None | tuple[ufunc, tuple[Any, ...], int] = ..., /) -> Any:
|
||||
...
|
||||
|
||||
|
||||
|
||||
class _SupportsArrayWrap(Protocol):
|
||||
@property
|
||||
def __array_wrap__(self) -> _ArrayWrap:
|
||||
...
|
||||
|
||||
|
||||
|
||||
class _SupportsArrayPrepare(Protocol):
|
||||
@property
|
||||
def __array_prepare__(self) -> _ArrayPrepare:
|
||||
...
|
||||
|
||||
|
||||
|
||||
__all__: list[str]
|
||||
row_stack = ...
|
||||
def take_along_axis(arr: _SCT | NDArray[_SCT], indices: NDArray[integer[Any]], axis: None | int) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
def put_along_axis(arr: NDArray[_SCT], indices: NDArray[integer[Any]], values: ArrayLike, axis: None | int) -> None:
|
||||
...
|
||||
|
||||
@overload
|
||||
def apply_along_axis(func1d: Callable[Concatenate[NDArray[Any], _P], _ArrayLike[_SCT]], axis: SupportsIndex, arr: ArrayLike, *args: _P.args, **kwargs: _P.kwargs) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def apply_along_axis(func1d: Callable[Concatenate[NDArray[Any], _P], ArrayLike], axis: SupportsIndex, arr: ArrayLike, *args: _P.args, **kwargs: _P.kwargs) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
def apply_over_axes(func: Callable[[NDArray[Any], int], NDArray[_SCT]], a: ArrayLike, axes: int | Sequence[int]) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def expand_dims(a: _ArrayLike[_SCT], axis: _ShapeLike) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def expand_dims(a: ArrayLike, axis: _ShapeLike) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def column_stack(tup: Sequence[_ArrayLike[_SCT]]) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def column_stack(tup: Sequence[ArrayLike]) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def dstack(tup: Sequence[_ArrayLike[_SCT]]) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def dstack(tup: Sequence[ArrayLike]) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def array_split(ary: _ArrayLike[_SCT], indices_or_sections: _ShapeLike, axis: SupportsIndex = ...) -> list[NDArray[_SCT]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def array_split(ary: ArrayLike, indices_or_sections: _ShapeLike, axis: SupportsIndex = ...) -> list[NDArray[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def split(ary: _ArrayLike[_SCT], indices_or_sections: _ShapeLike, axis: SupportsIndex = ...) -> list[NDArray[_SCT]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def split(ary: ArrayLike, indices_or_sections: _ShapeLike, axis: SupportsIndex = ...) -> list[NDArray[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def hsplit(ary: _ArrayLike[_SCT], indices_or_sections: _ShapeLike) -> list[NDArray[_SCT]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def hsplit(ary: ArrayLike, indices_or_sections: _ShapeLike) -> list[NDArray[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def vsplit(ary: _ArrayLike[_SCT], indices_or_sections: _ShapeLike) -> list[NDArray[_SCT]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def vsplit(ary: ArrayLike, indices_or_sections: _ShapeLike) -> list[NDArray[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def dsplit(ary: _ArrayLike[_SCT], indices_or_sections: _ShapeLike) -> list[NDArray[_SCT]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def dsplit(ary: ArrayLike, indices_or_sections: _ShapeLike) -> list[NDArray[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def get_array_prepare(*args: _SupportsArrayPrepare) -> _ArrayPrepare:
|
||||
...
|
||||
|
||||
@overload
|
||||
def get_array_prepare(*args: object) -> None | _ArrayPrepare:
|
||||
...
|
||||
|
||||
@overload
|
||||
def get_array_wrap(*args: _SupportsArrayWrap) -> _ArrayWrap:
|
||||
...
|
||||
|
||||
@overload
|
||||
def get_array_wrap(*args: object) -> None | _ArrayWrap:
|
||||
...
|
||||
|
||||
@overload
|
||||
def kron(a: _ArrayLikeBool_co, b: _ArrayLikeBool_co) -> NDArray[bool_]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def kron(a: _ArrayLikeUInt_co, b: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def kron(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def kron(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co) -> NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def kron(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def kron(a: _ArrayLikeObject_co, b: Any) -> NDArray[object_]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def kron(a: Any, b: _ArrayLikeObject_co) -> NDArray[object_]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def tile(A: _ArrayLike[_SCT], reps: int | Sequence[int]) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def tile(A: ArrayLike, reps: int | Sequence[int]) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
49
typings/numpy/lib/stride_tricks.pyi
Normal file
49
typings/numpy/lib/stride_tricks.pyi
Normal file
|
|
@ -0,0 +1,49 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from collections.abc import Iterable
|
||||
from typing import Any, SupportsIndex, TypeVar, overload
|
||||
from numpy import generic
|
||||
from numpy._typing import ArrayLike, NDArray, _ArrayLike, _Shape, _ShapeLike
|
||||
|
||||
_SCT = TypeVar("_SCT", bound=generic)
|
||||
__all__: list[str]
|
||||
class DummyArray:
|
||||
__array_interface__: dict[str, Any]
|
||||
base: None | NDArray[Any]
|
||||
def __init__(self, interface: dict[str, Any], base: None | NDArray[Any] = ...) -> None:
|
||||
...
|
||||
|
||||
|
||||
|
||||
@overload
|
||||
def as_strided(x: _ArrayLike[_SCT], shape: None | Iterable[int] = ..., strides: None | Iterable[int] = ..., subok: bool = ..., writeable: bool = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def as_strided(x: ArrayLike, shape: None | Iterable[int] = ..., strides: None | Iterable[int] = ..., subok: bool = ..., writeable: bool = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def sliding_window_view(x: _ArrayLike[_SCT], window_shape: int | Iterable[int], axis: None | SupportsIndex = ..., *, subok: bool = ..., writeable: bool = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def sliding_window_view(x: ArrayLike, window_shape: int | Iterable[int], axis: None | SupportsIndex = ..., *, subok: bool = ..., writeable: bool = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def broadcast_to(array: _ArrayLike[_SCT], shape: int | Iterable[int], subok: bool = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def broadcast_to(array: ArrayLike, shape: int | Iterable[int], subok: bool = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
def broadcast_shapes(*args: _ShapeLike) -> _Shape:
|
||||
...
|
||||
|
||||
def broadcast_arrays(*args: ArrayLike, subok: bool = ...) -> list[NDArray[Any]]:
|
||||
...
|
||||
|
||||
133
typings/numpy/lib/twodim_base.pyi
Normal file
133
typings/numpy/lib/twodim_base.pyi
Normal file
|
|
@ -0,0 +1,133 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from collections.abc import Callable, Sequence
|
||||
from typing import Any, TypeVar, Union, overload
|
||||
from numpy import _OrderCF, bool_, complexfloating, datetime64, float64, floating, generic, int_, intp, number, object_, signedinteger, timedelta64
|
||||
from numpy._typing import ArrayLike, DTypeLike, NDArray, _ArrayLike, _ArrayLikeComplex_co, _ArrayLikeFloat_co, _ArrayLikeInt_co, _ArrayLikeObject_co, _DTypeLike, _SupportsArrayFunc
|
||||
|
||||
_T = TypeVar("_T")
|
||||
_SCT = TypeVar("_SCT", bound=generic)
|
||||
_MaskFunc = Callable[[NDArray[int_], _T], NDArray[Union[number[Any], bool_, timedelta64, datetime64, object_]],]
|
||||
__all__: list[str]
|
||||
@overload
|
||||
def fliplr(m: _ArrayLike[_SCT]) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def fliplr(m: ArrayLike) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def flipud(m: _ArrayLike[_SCT]) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def flipud(m: ArrayLike) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def eye(N: int, M: None | int = ..., k: int = ..., dtype: None = ..., order: _OrderCF = ..., *, like: None | _SupportsArrayFunc = ...) -> NDArray[float64]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def eye(N: int, M: None | int = ..., k: int = ..., dtype: _DTypeLike[_SCT] = ..., order: _OrderCF = ..., *, like: None | _SupportsArrayFunc = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def eye(N: int, M: None | int = ..., k: int = ..., dtype: DTypeLike = ..., order: _OrderCF = ..., *, like: None | _SupportsArrayFunc = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def diag(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def diag(v: ArrayLike, k: int = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def diagflat(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def diagflat(v: ArrayLike, k: int = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def tri(N: int, M: None | int = ..., k: int = ..., dtype: None = ..., *, like: None | _SupportsArrayFunc = ...) -> NDArray[float64]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def tri(N: int, M: None | int = ..., k: int = ..., dtype: _DTypeLike[_SCT] = ..., *, like: None | _SupportsArrayFunc = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def tri(N: int, M: None | int = ..., k: int = ..., dtype: DTypeLike = ..., *, like: None | _SupportsArrayFunc = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def tril(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def tril(v: ArrayLike, k: int = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def triu(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def triu(v: ArrayLike, k: int = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def vander(x: _ArrayLikeInt_co, N: None | int = ..., increasing: bool = ...) -> NDArray[signedinteger[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def vander(x: _ArrayLikeFloat_co, N: None | int = ..., increasing: bool = ...) -> NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def vander(x: _ArrayLikeComplex_co, N: None | int = ..., increasing: bool = ...) -> NDArray[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def vander(x: _ArrayLikeObject_co, N: None | int = ..., increasing: bool = ...) -> NDArray[object_]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def histogram2d(x: _ArrayLikeFloat_co, y: _ArrayLikeFloat_co, bins: int | Sequence[int] = ..., range: None | _ArrayLikeFloat_co = ..., density: None | bool = ..., weights: None | _ArrayLikeFloat_co = ...) -> tuple[NDArray[float64], NDArray[floating[Any]], NDArray[floating[Any]],]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def histogram2d(x: _ArrayLikeComplex_co, y: _ArrayLikeComplex_co, bins: int | Sequence[int] = ..., range: None | _ArrayLikeFloat_co = ..., density: None | bool = ..., weights: None | _ArrayLikeFloat_co = ...) -> tuple[NDArray[float64], NDArray[complexfloating[Any, Any]], NDArray[complexfloating[Any, Any]],]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def histogram2d(x: _ArrayLikeComplex_co, y: _ArrayLikeComplex_co, bins: Sequence[_ArrayLikeInt_co], range: None | _ArrayLikeFloat_co = ..., density: None | bool = ..., weights: None | _ArrayLikeFloat_co = ...) -> tuple[NDArray[float64], NDArray[Any], NDArray[Any],]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def mask_indices(n: int, mask_func: _MaskFunc[int], k: int = ...) -> tuple[NDArray[intp], NDArray[intp]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def mask_indices(n: int, mask_func: _MaskFunc[_T], k: _T) -> tuple[NDArray[intp], NDArray[intp]]:
|
||||
...
|
||||
|
||||
def tril_indices(n: int, k: int = ..., m: None | int = ...) -> tuple[NDArray[int_], NDArray[int_]]:
|
||||
...
|
||||
|
||||
def tril_indices_from(arr: NDArray[Any], k: int = ...) -> tuple[NDArray[int_], NDArray[int_]]:
|
||||
...
|
||||
|
||||
def triu_indices(n: int, k: int = ..., m: None | int = ...) -> tuple[NDArray[int_], NDArray[int_]]:
|
||||
...
|
||||
|
||||
def triu_indices_from(arr: NDArray[Any], k: int = ...) -> tuple[NDArray[int_], NDArray[int_]]:
|
||||
...
|
||||
|
||||
218
typings/numpy/lib/type_check.pyi
Normal file
218
typings/numpy/lib/type_check.pyi
Normal file
|
|
@ -0,0 +1,218 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from collections.abc import Container, Iterable
|
||||
from typing import Any, Literal as L, Protocol, TypeVar, overload
|
||||
from numpy import bool_, complexfloating, dtype, float64, floating, generic, integer
|
||||
from numpy._typing import ArrayLike, DTypeLike, NBitBase, NDArray, _64Bit, _ArrayLike, _DTypeLikeComplex, _ScalarLike_co, _SupportsDType
|
||||
|
||||
_T = TypeVar("_T")
|
||||
_T_co = TypeVar("_T_co", covariant=True)
|
||||
_SCT = TypeVar("_SCT", bound=generic)
|
||||
_NBit1 = TypeVar("_NBit1", bound=NBitBase)
|
||||
_NBit2 = TypeVar("_NBit2", bound=NBitBase)
|
||||
class _SupportsReal(Protocol[_T_co]):
|
||||
@property
|
||||
def real(self) -> _T_co:
|
||||
...
|
||||
|
||||
|
||||
|
||||
class _SupportsImag(Protocol[_T_co]):
|
||||
@property
|
||||
def imag(self) -> _T_co:
|
||||
...
|
||||
|
||||
|
||||
|
||||
__all__: list[str]
|
||||
def mintypecode(typechars: Iterable[str | ArrayLike], typeset: Container[str] = ..., default: str = ...) -> str:
|
||||
...
|
||||
|
||||
@overload
|
||||
def asfarray(a: object, dtype: None | type[float] = ...) -> NDArray[float64]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def asfarray(a: Any, dtype: _DTypeLikeComplex) -> NDArray[complexfloating[Any, Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def asfarray(a: Any, dtype: DTypeLike) -> NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def real(val: _SupportsReal[_T]) -> _T:
|
||||
...
|
||||
|
||||
@overload
|
||||
def real(val: ArrayLike) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def imag(val: _SupportsImag[_T]) -> _T:
|
||||
...
|
||||
|
||||
@overload
|
||||
def imag(val: ArrayLike) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def iscomplex(x: _ScalarLike_co) -> bool_:
|
||||
...
|
||||
|
||||
@overload
|
||||
def iscomplex(x: ArrayLike) -> NDArray[bool_]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def isreal(x: _ScalarLike_co) -> bool_:
|
||||
...
|
||||
|
||||
@overload
|
||||
def isreal(x: ArrayLike) -> NDArray[bool_]:
|
||||
...
|
||||
|
||||
def iscomplexobj(x: _SupportsDType[dtype[Any]] | ArrayLike) -> bool:
|
||||
...
|
||||
|
||||
def isrealobj(x: _SupportsDType[dtype[Any]] | ArrayLike) -> bool:
|
||||
...
|
||||
|
||||
@overload
|
||||
def nan_to_num(x: _SCT, copy: bool = ..., nan: float = ..., posinf: None | float = ..., neginf: None | float = ...) -> _SCT:
|
||||
...
|
||||
|
||||
@overload
|
||||
def nan_to_num(x: _ScalarLike_co, copy: bool = ..., nan: float = ..., posinf: None | float = ..., neginf: None | float = ...) -> Any:
|
||||
...
|
||||
|
||||
@overload
|
||||
def nan_to_num(x: _ArrayLike[_SCT], copy: bool = ..., nan: float = ..., posinf: None | float = ..., neginf: None | float = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def nan_to_num(x: ArrayLike, copy: bool = ..., nan: float = ..., posinf: None | float = ..., neginf: None | float = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def real_if_close(a: _ArrayLike[complexfloating[_NBit1, _NBit1]], tol: float = ...) -> NDArray[floating[_NBit1]] | NDArray[complexfloating[_NBit1, _NBit1]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def real_if_close(a: _ArrayLike[_SCT], tol: float = ...) -> NDArray[_SCT]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def real_if_close(a: ArrayLike, tol: float = ...) -> NDArray[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def typename(char: L['S1']) -> L['character']:
|
||||
...
|
||||
|
||||
@overload
|
||||
def typename(char: L['?']) -> L['bool']:
|
||||
...
|
||||
|
||||
@overload
|
||||
def typename(char: L['b']) -> L['signed char']:
|
||||
...
|
||||
|
||||
@overload
|
||||
def typename(char: L['B']) -> L['unsigned char']:
|
||||
...
|
||||
|
||||
@overload
|
||||
def typename(char: L['h']) -> L['short']:
|
||||
...
|
||||
|
||||
@overload
|
||||
def typename(char: L['H']) -> L['unsigned short']:
|
||||
...
|
||||
|
||||
@overload
|
||||
def typename(char: L['i']) -> L['integer']:
|
||||
...
|
||||
|
||||
@overload
|
||||
def typename(char: L['I']) -> L['unsigned integer']:
|
||||
...
|
||||
|
||||
@overload
|
||||
def typename(char: L['l']) -> L['long integer']:
|
||||
...
|
||||
|
||||
@overload
|
||||
def typename(char: L['L']) -> L['unsigned long integer']:
|
||||
...
|
||||
|
||||
@overload
|
||||
def typename(char: L['q']) -> L['long long integer']:
|
||||
...
|
||||
|
||||
@overload
|
||||
def typename(char: L['Q']) -> L['unsigned long long integer']:
|
||||
...
|
||||
|
||||
@overload
|
||||
def typename(char: L['f']) -> L['single precision']:
|
||||
...
|
||||
|
||||
@overload
|
||||
def typename(char: L['d']) -> L['double precision']:
|
||||
...
|
||||
|
||||
@overload
|
||||
def typename(char: L['g']) -> L['long precision']:
|
||||
...
|
||||
|
||||
@overload
|
||||
def typename(char: L['F']) -> L['complex single precision']:
|
||||
...
|
||||
|
||||
@overload
|
||||
def typename(char: L['D']) -> L['complex double precision']:
|
||||
...
|
||||
|
||||
@overload
|
||||
def typename(char: L['G']) -> L['complex long double precision']:
|
||||
...
|
||||
|
||||
@overload
|
||||
def typename(char: L['S']) -> L['string']:
|
||||
...
|
||||
|
||||
@overload
|
||||
def typename(char: L['U']) -> L['unicode']:
|
||||
...
|
||||
|
||||
@overload
|
||||
def typename(char: L['V']) -> L['void']:
|
||||
...
|
||||
|
||||
@overload
|
||||
def typename(char: L['O']) -> L['object']:
|
||||
...
|
||||
|
||||
@overload
|
||||
def common_type(*arrays: _SupportsDType[dtype[integer[Any]]]) -> type[floating[_64Bit]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def common_type(*arrays: _SupportsDType[dtype[floating[_NBit1]]]) -> type[floating[_NBit1]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def common_type(*arrays: _SupportsDType[dtype[integer[Any] | floating[_NBit1]]]) -> type[floating[_NBit1 | _64Bit]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def common_type(*arrays: _SupportsDType[dtype[floating[_NBit1] | complexfloating[_NBit2, _NBit2]]]) -> type[complexfloating[_NBit1 | _NBit2, _NBit1 | _NBit2]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def common_type(*arrays: _SupportsDType[dtype[integer[Any] | floating[_NBit1] | complexfloating[_NBit2, _NBit2]]]) -> type[complexfloating[_64Bit | _NBit1 | _NBit2, _64Bit | _NBit1 | _NBit2]]:
|
||||
...
|
||||
|
||||
50
typings/numpy/lib/ufunclike.pyi
Normal file
50
typings/numpy/lib/ufunclike.pyi
Normal file
|
|
@ -0,0 +1,50 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from typing import Any, TypeVar, overload
|
||||
from numpy import bool_, floating, ndarray, object_
|
||||
from numpy._typing import NDArray, _ArrayLikeFloat_co, _ArrayLikeObject_co, _FloatLike_co
|
||||
|
||||
_ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])
|
||||
__all__: list[str]
|
||||
@overload
|
||||
def fix(x: _FloatLike_co, out: None = ...) -> floating[Any]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def fix(x: _ArrayLikeFloat_co, out: None = ...) -> NDArray[floating[Any]]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def fix(x: _ArrayLikeObject_co, out: None = ...) -> NDArray[object_]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def fix(x: _ArrayLikeFloat_co | _ArrayLikeObject_co, out: _ArrayType) -> _ArrayType:
|
||||
...
|
||||
|
||||
@overload
|
||||
def isposinf(x: _FloatLike_co, out: None = ...) -> bool_:
|
||||
...
|
||||
|
||||
@overload
|
||||
def isposinf(x: _ArrayLikeFloat_co, out: None = ...) -> NDArray[bool_]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def isposinf(x: _ArrayLikeFloat_co, out: _ArrayType) -> _ArrayType:
|
||||
...
|
||||
|
||||
@overload
|
||||
def isneginf(x: _FloatLike_co, out: None = ...) -> bool_:
|
||||
...
|
||||
|
||||
@overload
|
||||
def isneginf(x: _ArrayLikeFloat_co, out: None = ...) -> NDArray[bool_]:
|
||||
...
|
||||
|
||||
@overload
|
||||
def isneginf(x: _ArrayLikeFloat_co, out: _ArrayType) -> _ArrayType:
|
||||
...
|
||||
|
||||
65
typings/numpy/lib/utils.pyi
Normal file
65
typings/numpy/lib/utils.pyi
Normal file
|
|
@ -0,0 +1,65 @@
|
|||
"""
|
||||
This type stub file was generated by pyright.
|
||||
"""
|
||||
|
||||
from ast import AST
|
||||
from collections.abc import Callable, Mapping, Sequence
|
||||
from typing import Any, Protocol, TypeVar, overload
|
||||
from numpy import generic, ndarray
|
||||
|
||||
_T_contra = TypeVar("_T_contra", contravariant=True)
|
||||
_FuncType = TypeVar("_FuncType", bound=Callable[..., Any])
|
||||
class _SupportsWrite(Protocol[_T_contra]):
|
||||
def write(self, s: _T_contra, /) -> Any:
|
||||
...
|
||||
|
||||
|
||||
|
||||
__all__: list[str]
|
||||
class _Deprecate:
|
||||
old_name: None | str
|
||||
new_name: None | str
|
||||
message: None | str
|
||||
def __init__(self, old_name: None | str = ..., new_name: None | str = ..., message: None | str = ...) -> None:
|
||||
...
|
||||
|
||||
def __call__(self, func: _FuncType) -> _FuncType:
|
||||
...
|
||||
|
||||
|
||||
|
||||
def get_include() -> str:
|
||||
...
|
||||
|
||||
@overload
|
||||
def deprecate(*, old_name: None | str = ..., new_name: None | str = ..., message: None | str = ...) -> _Deprecate:
|
||||
...
|
||||
|
||||
@overload
|
||||
def deprecate(func: _FuncType, /, old_name: None | str = ..., new_name: None | str = ..., message: None | str = ...) -> _FuncType:
|
||||
...
|
||||
|
||||
def deprecate_with_doc(msg: None | str) -> _Deprecate:
|
||||
...
|
||||
|
||||
def byte_bounds(a: generic | ndarray[Any, Any]) -> tuple[int, int]:
|
||||
...
|
||||
|
||||
def who(vardict: None | Mapping[str, ndarray[Any, Any]] = ...) -> None:
|
||||
...
|
||||
|
||||
def info(object: object = ..., maxwidth: int = ..., output: None | _SupportsWrite[str] = ..., toplevel: str = ...) -> None:
|
||||
...
|
||||
|
||||
def source(object: object, output: None | _SupportsWrite[str] = ...) -> None:
|
||||
...
|
||||
|
||||
def lookfor(what: str, module: None | str | Sequence[str] = ..., import_modules: bool = ..., regenerate: bool = ..., output: None | _SupportsWrite[str] = ...) -> None:
|
||||
...
|
||||
|
||||
def safe_eval(source: str | AST) -> Any:
|
||||
...
|
||||
|
||||
def show_runtime() -> None:
|
||||
...
|
||||
|
||||
Loading…
Add table
Add a link
Reference in a new issue