107 lines
2.9 KiB
Text
107 lines
2.9 KiB
Text
#ifndef POTENTIALS_CUH
|
|
#define POTENTIALS_CUH
|
|
|
|
#include "precision.hpp"
|
|
#include "vec3.h"
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cuda_runtime.h>
|
|
#include <variant>
|
|
|
|
#ifdef __CUDACC__
|
|
#define CUDA_CALLABLE __host__ __device__
|
|
#else
|
|
#define CUDA_CALLABLE
|
|
#endif
|
|
|
|
/**
|
|
* Calculate the Lennard-Jones energy and force for the current particle
|
|
* pair described by displacement vector r
|
|
*/
|
|
struct LennardJones {
|
|
real m_sigma;
|
|
real m_epsilon;
|
|
real m_rcutoffsq;
|
|
|
|
CUDA_CALLABLE LennardJones(real sigma, real epsilon, real rcutoff) {
|
|
m_sigma = sigma;
|
|
m_epsilon = epsilon;
|
|
m_rcutoffsq = rcutoff * rcutoff;
|
|
};
|
|
|
|
CUDA_CALLABLE float4 calc_force_and_energy(Vec3<real> r) {
|
|
real rmagsq = r.squared_norm2();
|
|
if (rmagsq < m_rcutoffsq && rmagsq > 0.0) {
|
|
real inv_rmag = 1 / sqrt(rmagsq);
|
|
|
|
// Pre-Compute the terms (doing this saves on multiple devisions/pow
|
|
// function call)
|
|
real sigma_r = m_sigma * inv_rmag;
|
|
real sigma_r6 = sigma_r * sigma_r * sigma_r * sigma_r * sigma_r * sigma_r;
|
|
real sigma_r12 = sigma_r6 * sigma_r6;
|
|
|
|
// Get the energy
|
|
real energy = 4.0 * m_epsilon * (sigma_r12 - sigma_r6);
|
|
|
|
// Get the force vector
|
|
real force_mag =
|
|
4.0 * m_epsilon *
|
|
(12.0 * sigma_r12 * inv_rmag - 6.0 * sigma_r6 * inv_rmag);
|
|
Vec3<real> force = r.scale(force_mag * inv_rmag);
|
|
|
|
return make_float4(force.x, force.y, force.z, energy);
|
|
|
|
} else {
|
|
return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
|
|
}
|
|
};
|
|
};
|
|
|
|
/**
|
|
* Calculate the Morse potential energy and force for the current particle pair
|
|
* described by displacement vector r
|
|
*/
|
|
struct Morse {
|
|
real m_D; // Depth of the potential well
|
|
real m_a; // Width of the potential
|
|
real m_r0; // Equilibrium bond distance
|
|
real m_rcutoffsq; // Cutoff distance squared
|
|
|
|
CUDA_CALLABLE Morse(real D, real a, real r0, real rcutoff) {
|
|
m_D = D;
|
|
m_a = a;
|
|
m_r0 = r0;
|
|
m_rcutoffsq = rcutoff * rcutoff;
|
|
};
|
|
|
|
CUDA_CALLABLE float4 calc_force_and_energy(Vec3<real> r) {
|
|
real rmagsq = r.squared_norm2();
|
|
if (rmagsq < m_rcutoffsq && rmagsq > 0.0) {
|
|
real rmag = sqrt(rmagsq);
|
|
real dr = rmag - m_r0;
|
|
|
|
// Compute exponentials
|
|
real exp_a_dr = exp(-m_a * dr);
|
|
real exp_2a_dr = exp_a_dr * exp_a_dr;
|
|
|
|
// Energy: V(r) = D * (exp(-2a(r - r0)) - 2*exp(-a(r - r0)))
|
|
real energy = m_D * (exp_2a_dr - 2.0 * exp_a_dr);
|
|
|
|
// Force magnitude: F(r) = 2aD * (exp(-2a(r - r0)) - exp(-a(r - r0)))
|
|
real force_mag = 2.0 * m_a * m_D * (exp_2a_dr - exp_a_dr);
|
|
|
|
// Direction: normalized vector
|
|
Vec3<real> force = r.scale(force_mag / rmag);
|
|
|
|
return make_float4(force.x, force.y, force.z, energy);
|
|
|
|
} else {
|
|
return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
|
|
}
|
|
};
|
|
};
|
|
|
|
// Variant type for storing pair potential types
|
|
using PairPotentials = std::variant<LennardJones, Morse>;
|
|
|
|
#endif
|