Compare commits
10 commits
8408036078
...
746face829
Author | SHA1 | Date | |
---|---|---|---|
746face829 | |||
62e52940bc | |||
4269333aa2 | |||
5155ec21aa | |||
f15eb0cf51 | |||
6162b27a89 | |||
dfd6f43e9b | |||
a65149a619 | |||
942caf0f15 | |||
68f8b02f0a |
18 changed files with 759 additions and 147 deletions
7
.gitignore
vendored
7
.gitignore
vendored
|
@ -1,5 +1,8 @@
|
|||
# Builds
|
||||
build/
|
||||
Debug/
|
||||
Testing/
|
||||
compile_commands.json
|
||||
|
||||
# Google Tests
|
||||
tests/lib/
|
||||
|
@ -7,3 +10,7 @@ tests/lib/
|
|||
# Jet Brains
|
||||
.idea/
|
||||
cmake-build-debug/
|
||||
|
||||
# Cache dir
|
||||
.cache
|
||||
|
||||
|
|
|
@ -1,23 +1,63 @@
|
|||
cmake_minimum_required(VERSION 3.9)
|
||||
project(MyProject)
|
||||
set(NAME "cudaCAC")
|
||||
project(${NAME} LANGUAGES CUDA CXX)
|
||||
|
||||
enable_testing()
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
|
||||
# Default settings
|
||||
add_compile_options(-Wall -Wextra -Wpedantic)
|
||||
|
||||
add_compile_options($<$<COMPILE_LANGUAGE:CUDA>:-Wno-pedantic>)
|
||||
|
||||
# Add pedantic just for
|
||||
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
|
||||
set(SOURCE_FILES main.cpp)
|
||||
add_executable(${CMAKE_PROJECT_NAME}_run ${SOURCE_FILES})
|
||||
# Cuda Settings
|
||||
set(CMAKE_CUDA_ARCHITECTURES 61)
|
||||
set(CUDA_SEPARABLE_COMPILATION ON)
|
||||
# Cuda settings to get correct compile_commands.json
|
||||
set(CMAKE_CUDA_USE_RESPONSE_FILE_FOR_INCLUDES 0)
|
||||
set(CMAKE_CUDA_USE_RESPONSE_FILE_FOR_LIBRARIES 0)
|
||||
set(CMAKE_CUDA_USE_RESPONSE_FILE_FOR_OBJECTS 0)
|
||||
|
||||
# Add Vec3 as a dependency
|
||||
include(FetchContent)
|
||||
FetchContent_Declare(Vec3
|
||||
GIT_REPOSITORY https://www.alexselimov.com/git/aselimov/Vec3.git
|
||||
)
|
||||
|
||||
FetchContent_GetProperties(Vec3)
|
||||
if(NOT Vec3_POPULATED)
|
||||
FetchContent_MakeAvailable(Vec3)
|
||||
include_directories(${Vec3_SOURCE_DIR})
|
||||
endif()
|
||||
|
||||
include_directories(/usr/local/cuda-12.8/include)
|
||||
include_directories(src)
|
||||
include_directories(kernels)
|
||||
|
||||
add_subdirectory(src)
|
||||
add_subdirectory(kernels)
|
||||
add_subdirectory(tests)
|
||||
|
||||
target_link_libraries(${CMAKE_PROJECT_NAME}_run ${CMAKE_PROJECT_NAME}_lib)
|
||||
add_executable(${NAME} main.cpp)
|
||||
install(DIRECTORY src/ DESTINATION src/)
|
||||
|
||||
target_link_libraries(
|
||||
${NAME}
|
||||
PRIVATE
|
||||
${NAME}_lib
|
||||
${NAME}_cuda_lib
|
||||
${CUDA_LIBRARIES}
|
||||
)
|
||||
|
||||
# Doxygen Build
|
||||
option(BUILD_DOC "Build Documentation" ON)
|
||||
option(BUILD_DOC "Build Documentation" OFF)
|
||||
|
||||
find_package(Doxygen)
|
||||
if(DOXYGEN_FOUND)
|
||||
if(DOXYGEN_FOUND AND BUILD_DOC)
|
||||
set(BUILD_DOC_DIR ${CMAKE_SOURCE_DIR}/build/docs)
|
||||
if(NOT EXISTS ${BUILD_DOC_DIR})
|
||||
file(MAKE_DIRECTORY ${BUILD_DOC_DIR})
|
||||
|
@ -33,6 +73,6 @@ if(DOXYGEN_FOUND)
|
|||
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
|
||||
COMMENT "Generating API documentation with Doxygen"
|
||||
VERBATIM)
|
||||
else(DOXYGEN_FOUND)
|
||||
else(DOXYGEN_FOUND AND BUILD_DOC)
|
||||
message("Doxygen needs to be installed to generate the documentation.")
|
||||
endif(DOXYGEN_FOUND)
|
||||
endif(DOXYGEN_FOUND AND BUILD_DOC)
|
||||
|
|
70
README.md
70
README.md
|
@ -6,75 +6,7 @@ following components:
|
|||
|
||||
- Directory Structure
|
||||
- Make Build (CMake)
|
||||
- CUDA integration
|
||||
- Unit Test Framework (Google Test)
|
||||
- API Documentation (Doxygen)
|
||||
|
||||
Feel free to fork this repository and tailor it to suit you.
|
||||
|
||||
## Procedure
|
||||
1. Download Bash script to create new C++ projects
|
||||
```bash
|
||||
curl -O https://raw.githubusercontent.com/TimothyHelton/cpp_project_template/master/new_cpp_project.sh
|
||||
chmod u+x new_cpp_project.sh
|
||||
```
|
||||
1. Create new C++ project
|
||||
```bash
|
||||
./new_cpp_project.sh NewProjectName
|
||||
```
|
||||
1. In the project top level **CMakeLists.txt**:
|
||||
1. Line 2: Change the variable **MyProject** to the name of your project.
|
||||
```cmake
|
||||
project(NewProject)
|
||||
```
|
||||
- This variable will be used in a couple of different places.
|
||||
- MyProject_run: will be the main executable name
|
||||
- MyProject_lib: will be the project library name
|
||||
1. Line 4: Set the version of C++ to use. For example, let's set up the
|
||||
NewProject to use C++ 11.
|
||||
```cmake
|
||||
set(CMAKE_CXX_STANDARD 11)
|
||||
```
|
||||
1. Update project name and description in the `Doxyfile` located in the `docs`
|
||||
directory.
|
||||
1. Update line `PROJECT_NAME`
|
||||
1. This name will appear on each documentation page.
|
||||
1. Update line `PROJECT_NUMBER`
|
||||
1. This is the version number of your project.
|
||||
1. Update line `PROJECT_BRIEF`
|
||||
1. Any text entered here will also appear on each documentation page.
|
||||
Try not to make this one too long.
|
||||
1. Reload the top CMake file.
|
||||
|
||||
## CLION IDE Specific Instructions
|
||||
I started using an IDE from [JET Brains](https://www.jetbrains.com/) tailored
|
||||
for Python called [PyCharm](https://www.jetbrains.com/pycharm/) and thought
|
||||
it helped me write better code.
|
||||
I'd been wanting to learn C++ and decided to give JET Brains C/C++ IDE called
|
||||
[CLion](https://www.jetbrains.com/clion/) a try.
|
||||
The code completion, interactive suggestions, debugger, introspection tools,
|
||||
and built-in test execution are very handy.
|
||||
There are a couple extra details to set when using this IDE.
|
||||
|
||||
1. The IDE allows you to mark directories with their desired purpose.
|
||||
To mark a directory right click on the directory name in the `Project` window
|
||||
and select `Mark Directory as` from the drop-down menu.
|
||||
1. Mark the `src` directory as `Project Sources and Headers`
|
||||
1. Mark the `tests/lib/googletest` directory as `Library Files`
|
||||
1. Setup the `Run/Debug Configuration` by selecting `Edit Configurations...`
|
||||
from the pull-down menu from the run button (green triangle) in the upper right
|
||||
corner.
|
||||
1. Update Doxygen Build to execute the unit test suite.
|
||||
1. Select Doxygen from the Application menu on the left.
|
||||
1. Choose the **executable** for Doxygen to be `Unit_Tests_run`.
|
||||
1. Create a `Google Test` configuration
|
||||
1. In the upper left corner select the plus symbol.
|
||||
1. Chose `Google Test` from the drop-down menu.
|
||||
1. Set **Name** to `Unit Tests`.
|
||||
1. Set **Target** to `Unit_Tests_run`.
|
||||
|
||||
## Wrap Up
|
||||
That should be all it takes to start writing code.
|
||||
If you find any issues or bugs with this repository please file an issue on
|
||||
[GitHub](https://github.com/TimothyHelton/cpp_project_template/issues).
|
||||
|
||||
Hope you find this template useful and enjoy learning C++!
|
|
@ -1,33 +0,0 @@
|
|||
#!/usr/bin/env bash
|
||||
|
||||
# Exit if name argument is not given
|
||||
if [ -z "$*" ]; then
|
||||
echo "A project name argument must be provided."
|
||||
exit 0
|
||||
fi
|
||||
|
||||
NAME=$1
|
||||
|
||||
|
||||
################################################################################
|
||||
|
||||
|
||||
# Clone template repository
|
||||
git clone https://github.com/TimothyHelton/cpp_project_template
|
||||
|
||||
# Create bare repository
|
||||
git --bare init ${NAME}
|
||||
|
||||
# Push template master branch to bare repository
|
||||
cd cpp_project_template
|
||||
git push ../${NAME} +master:master
|
||||
|
||||
# Convert bare repository into a normal repository
|
||||
cd ../${NAME}
|
||||
mkdir .git
|
||||
mv * .git
|
||||
git config --local --bool core.bare false
|
||||
git reset --hard
|
||||
|
||||
# Clean Up
|
||||
rm -rf ../cpp_project_template ../create_project.sh
|
14
kernels/CMakeLists.txt
Normal file
14
kernels/CMakeLists.txt
Normal file
|
@ -0,0 +1,14 @@
|
|||
project(${NAME}_cuda_lib CUDA CXX)
|
||||
|
||||
set(HEADER_FILES
|
||||
pair_potentials.cuh
|
||||
)
|
||||
set(SOURCE_FILES
|
||||
)
|
||||
|
||||
# The library contains header and source files.
|
||||
add_library(${NAME}_cuda_lib INTERFACE
|
||||
${SOURCE_FILES}
|
||||
${HEADER_FILES}
|
||||
)
|
||||
|
91
kernels/pair_potentials.cuh
Normal file
91
kernels/pair_potentials.cuh
Normal file
|
@ -0,0 +1,91 @@
|
|||
#ifndef POTENTIALS_H
|
||||
#define POTENTIALS_H
|
||||
|
||||
#include "precision.hpp"
|
||||
#include "vec3.h"
|
||||
|
||||
#ifdef __CUDACC__
|
||||
#define CUDA_CALLABLE __host__ __device__
|
||||
#else
|
||||
#define CUDA_CALLABLE
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Result struct for the Pair Potential
|
||||
*/
|
||||
struct ForceAndEnergy {
|
||||
real energy;
|
||||
Vec3<real> force;
|
||||
|
||||
CUDA_CALLABLE inline static ForceAndEnergy zero() {
|
||||
return {0.0, {0.0, 0.0, 0.0}};
|
||||
};
|
||||
};
|
||||
|
||||
/**
|
||||
* Abstract implementation of a Pair Potential.
|
||||
* Pair potentials are potentials which depend solely on the distance
|
||||
* between two particles. These do not include multi-body potentials such as
|
||||
* EAM
|
||||
*
|
||||
*/
|
||||
struct PairPotential {
|
||||
real m_rcutoffsq;
|
||||
|
||||
PairPotential(real rcutoff) : m_rcutoffsq(rcutoff * rcutoff) {};
|
||||
#ifdef __CUDACC__
|
||||
CUDA_CALLABLE ~PairPotential();
|
||||
#else
|
||||
virtual ~PairPotential() = 0;
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Calculate the force and energy for a specific atom pair based on a
|
||||
* displacement vector r.
|
||||
*/
|
||||
CUDA_CALLABLE virtual ForceAndEnergy calc_force_and_energy(Vec3<real> r) = 0;
|
||||
};
|
||||
|
||||
/**
|
||||
* Calculate the Lennard-Jones energy and force for the current particle pair
|
||||
* described by displacement vector r
|
||||
*/
|
||||
struct LennardJones : PairPotential {
|
||||
real m_epsilon;
|
||||
real m_sigma;
|
||||
|
||||
CUDA_CALLABLE LennardJones(real sigma, real epsilon, real rcutoff)
|
||||
: PairPotential(rcutoff), m_epsilon(epsilon), m_sigma(sigma) {};
|
||||
|
||||
CUDA_CALLABLE ForceAndEnergy calc_force_and_energy(Vec3<real> r) {
|
||||
real rmagsq = r.squared_norm2();
|
||||
if (rmagsq < this->m_rcutoffsq && rmagsq > 0.0) {
|
||||
real inv_rmag = 1 / std::sqrt(rmagsq);
|
||||
|
||||
// Pre-Compute the terms (doing this saves on multiple devisions/pow
|
||||
// function call)
|
||||
real sigma_r = m_sigma * inv_rmag;
|
||||
real sigma_r6 = sigma_r * sigma_r * sigma_r * sigma_r * sigma_r * sigma_r;
|
||||
real sigma_r12 = sigma_r6 * sigma_r6;
|
||||
|
||||
// Get the energy
|
||||
real energy = 4.0 * m_epsilon * (sigma_r12 - sigma_r6);
|
||||
|
||||
// Get the force vector
|
||||
real force_mag =
|
||||
4.0 * m_epsilon *
|
||||
(12.0 * sigma_r12 * inv_rmag - 6.0 * sigma_r6 * inv_rmag);
|
||||
Vec3<real> force = r.scale(force_mag * inv_rmag);
|
||||
|
||||
return {energy, force};
|
||||
|
||||
} else {
|
||||
return ForceAndEnergy::zero();
|
||||
}
|
||||
};
|
||||
|
||||
CUDA_CALLABLE ~LennardJones(){};
|
||||
};
|
||||
|
||||
PairPotential::~PairPotential() {};
|
||||
#endif
|
8
main.cpp
8
main.cpp
|
@ -1,3 +1,9 @@
|
|||
#include "particle.hpp"
|
||||
#include "vec3.h"
|
||||
#include <iostream>
|
||||
|
||||
int main() {
|
||||
Particle test = {{0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, 10};
|
||||
std::cout << test.pos.x << " " << test.pos.y << " " << test.pos.z;
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,20 +0,0 @@
|
|||
#!/usr/bin/env bash
|
||||
|
||||
# Exit if name argument is not given
|
||||
if [ -z "$*" ]; then
|
||||
echo "A project name argument must be provided."
|
||||
exit 0
|
||||
fi
|
||||
|
||||
NAME=$1
|
||||
|
||||
|
||||
################################################################################
|
||||
|
||||
|
||||
# Download latest version of the build file
|
||||
curl -O https://raw.githubusercontent.com/TimothyHelton/cpp_project_template/master/create_project.sh
|
||||
chmod u+x create_project.sh
|
||||
|
||||
# Create Project
|
||||
./create_project.sh ${NAME}
|
|
@ -1,17 +1,16 @@
|
|||
project(${CMAKE_PROJECT_NAME}_lib)
|
||||
project(${NAME}_lib CUDA CXX)
|
||||
|
||||
set(HEADER_FILES
|
||||
particle.hpp
|
||||
simulation.hpp
|
||||
box.hpp
|
||||
|
||||
)
|
||||
set(SOURCE_FILES
|
||||
)
|
||||
|
||||
if (EXISTS ${SOURCE_FILES})
|
||||
# The library contains header and source files.
|
||||
add_library(${CMAKE_PROJECT_NAME}_lib STATIC
|
||||
${SOURCE_FILES}
|
||||
${HEADER_FILES}
|
||||
)
|
||||
else()
|
||||
# The library only contains header files.
|
||||
add_library(${CMAKE_PROJECT_NAME}_lib INTERFACE)
|
||||
endif()
|
||||
# The library contains header and source files.
|
||||
add_library(${NAME}_lib INTERFACE
|
||||
${HEADER_FILES}
|
||||
${SOURCE_FILES}
|
||||
)
|
||||
|
|
23
src/box.hpp
Normal file
23
src/box.hpp
Normal file
|
@ -0,0 +1,23 @@
|
|||
#ifndef BOX_H
|
||||
#define BOX_H
|
||||
|
||||
#include "precision.hpp"
|
||||
/**
|
||||
* Struct representing the simulation box.
|
||||
* Currently the simulation box is always assumed to be perfectly rectangular.
|
||||
* This code does not support shearing the box. This functionality may be added
|
||||
* in later.
|
||||
*/
|
||||
struct Box {
|
||||
real xlo;
|
||||
real xhi;
|
||||
real ylo;
|
||||
real yhi;
|
||||
real zlo;
|
||||
real zhi;
|
||||
bool x_is_periodic;
|
||||
bool y_is_periodic;
|
||||
bool z_is_periodic;
|
||||
};
|
||||
|
||||
#endif
|
19
src/particle.hpp
Normal file
19
src/particle.hpp
Normal file
|
@ -0,0 +1,19 @@
|
|||
#ifndef PARTICLE_H
|
||||
#define PARTICLE_H
|
||||
|
||||
#include "precision.hpp"
|
||||
#include "vec3.h"
|
||||
|
||||
/**
|
||||
* Class representing a single molecular dynamics particle.
|
||||
* This class is only used on the host side of the code and is converted
|
||||
* to the device arrays.
|
||||
*/
|
||||
struct Particle {
|
||||
Vec3<real> pos;
|
||||
Vec3<real> vel;
|
||||
Vec3<real> force;
|
||||
real mass;
|
||||
};
|
||||
|
||||
#endif
|
15
src/precision.hpp
Normal file
15
src/precision.hpp
Normal file
|
@ -0,0 +1,15 @@
|
|||
#ifndef PRECISION_H
|
||||
#define PRECISION_H
|
||||
|
||||
#ifdef USE_FLOATS
|
||||
|
||||
/*
|
||||
* If macro USE_FLOATS is set then the default type will be floating point
|
||||
* precision. Otherwise we use double precision by default
|
||||
*/
|
||||
typedef float real;
|
||||
#else
|
||||
typedef double real;
|
||||
#endif
|
||||
|
||||
#endif
|
18
src/simulation.hpp
Normal file
18
src/simulation.hpp
Normal file
|
@ -0,0 +1,18 @@
|
|||
#ifndef SIMULATION_H
|
||||
#define SIMULATION_H
|
||||
|
||||
#include "box.hpp"
|
||||
#include "particle.hpp"
|
||||
#include "precision.hpp"
|
||||
#include <vector>
|
||||
|
||||
class Simulation {
|
||||
// Simulation State variables
|
||||
real timestep;
|
||||
Box box;
|
||||
|
||||
// Host Data
|
||||
std::vector<Particle> particles;
|
||||
};
|
||||
|
||||
#endif
|
|
@ -10,4 +10,5 @@ if(NOT EXISTS ${GOOGLETEST_DIR})
|
|||
endif()
|
||||
|
||||
add_subdirectory(lib/googletest)
|
||||
add_subdirectory(unit_tests)
|
||||
add_subdirectory(unit_tests)
|
||||
add_subdirectory(cuda_unit_tests)
|
||||
|
|
9
tests/cuda_unit_tests/CMakeLists.txt
Normal file
9
tests/cuda_unit_tests/CMakeLists.txt
Normal file
|
@ -0,0 +1,9 @@
|
|||
include_directories(${gtest_SOURCE_DIR}/include ${gtest_SOURCE_DIR})
|
||||
|
||||
add_executable(${NAME}_cuda_tests
|
||||
test_potential.cu
|
||||
)
|
||||
|
||||
target_link_libraries(${NAME}_cuda_tests gtest gtest_main)
|
||||
target_link_libraries(${NAME}_cuda_tests ${CMAKE_PROJECT_NAME}_cuda_lib)
|
||||
add_test(NAME ${NAME}CudaTests COMMAND ${CMAKE_BINARY_DIR}/tests/unit_tests/${NAME}_tests)
|
316
tests/cuda_unit_tests/test_potential.cu
Normal file
316
tests/cuda_unit_tests/test_potential.cu
Normal file
|
@ -0,0 +1,316 @@
|
|||
#include "pair_potentials.cuh"
|
||||
#include "precision.hpp"
|
||||
#include "gtest/gtest.h"
|
||||
#include <cmath>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
// Structure to hold test results from device
|
||||
struct TestResults {
|
||||
bool zero_distance_pass;
|
||||
bool beyond_cutoff_pass;
|
||||
bool at_minimum_pass;
|
||||
bool at_equilibrium_pass;
|
||||
bool repulsive_region_pass;
|
||||
bool attractive_region_pass;
|
||||
bool arbitrary_direction_pass;
|
||||
bool parameter_variation_pass;
|
||||
bool exact_value_check_pass;
|
||||
bool near_cutoff_pass;
|
||||
|
||||
// Additional result data for exact checks
|
||||
real energy_values[10];
|
||||
Vec3<real> force_values[10];
|
||||
};
|
||||
|
||||
// Check if two Vec3 values are close within tolerance
|
||||
__device__ bool vec3_near(const Vec3<real> &a, const Vec3<real> &b,
|
||||
real tolerance) {
|
||||
return (fabs(a.x - b.x) < tolerance) && (fabs(a.y - b.y) < tolerance) &&
|
||||
(fabs(a.z - b.z) < tolerance);
|
||||
}
|
||||
|
||||
// Device kernel to run all tests
|
||||
__global__ void lennard_jones_test_kernel(TestResults *results) {
|
||||
// Default parameters
|
||||
real sigma = 1.0;
|
||||
real epsilon = 1.0;
|
||||
real r_cutoff = 2.5;
|
||||
real tolerance = 1e-10;
|
||||
|
||||
// Create LennardJones object on device
|
||||
LennardJones lj(sigma, epsilon, r_cutoff);
|
||||
|
||||
// Zero Distance Test
|
||||
{
|
||||
Vec3<real> r = {0.0, 0.0, 0.0};
|
||||
auto result = lj.calc_force_and_energy(r);
|
||||
results->energy_values[0] = result.energy;
|
||||
results->force_values[0] = result.force;
|
||||
results->zero_distance_pass =
|
||||
(result.energy == 0.0) &&
|
||||
vec3_near(Vec3<real>{0.0, 0.0, 0.0}, result.force, tolerance);
|
||||
}
|
||||
|
||||
// Beyond Cutoff Test
|
||||
{
|
||||
Vec3<real> r = {3.0, 0.0, 0.0};
|
||||
auto result = lj.calc_force_and_energy(r);
|
||||
results->energy_values[1] = result.energy;
|
||||
results->force_values[1] = result.force;
|
||||
results->beyond_cutoff_pass =
|
||||
(result.energy == 0.0) &&
|
||||
vec3_near(Vec3<real>{0.0, 0.0, 0.0}, result.force, tolerance);
|
||||
}
|
||||
|
||||
// At Minimum Test
|
||||
{
|
||||
real min_dist = pow(2.0, 1.0 / 6.0) * sigma;
|
||||
Vec3<real> r = {min_dist, 0.0, 0.0};
|
||||
auto result = lj.calc_force_and_energy(r);
|
||||
results->energy_values[2] = result.energy;
|
||||
results->force_values[2] = result.force;
|
||||
results->at_minimum_pass =
|
||||
(fabs(result.energy + epsilon) < tolerance) &&
|
||||
vec3_near(Vec3<real>{0.0, 0.0, 0.0}, result.force, tolerance);
|
||||
}
|
||||
|
||||
// At Equilibrium Test
|
||||
{
|
||||
Vec3<real> r = {sigma, 0.0, 0.0};
|
||||
auto result = lj.calc_force_and_energy(r);
|
||||
results->energy_values[3] = result.energy;
|
||||
results->force_values[3] = result.force;
|
||||
results->at_equilibrium_pass = (fabs(result.energy) < tolerance) &&
|
||||
(result.force.x > 0.0) &&
|
||||
(fabs(result.force.y) < tolerance) &&
|
||||
(fabs(result.force.z) < tolerance);
|
||||
}
|
||||
|
||||
// Repulsive Region Test
|
||||
{
|
||||
Vec3<real> r = {0.8 * sigma, 0.0, 0.0};
|
||||
auto result = lj.calc_force_and_energy(r);
|
||||
results->energy_values[4] = result.energy;
|
||||
results->force_values[4] = result.force;
|
||||
results->repulsive_region_pass =
|
||||
(result.energy > 0.0) && (result.force.x > 0.0);
|
||||
}
|
||||
|
||||
// Attractive Region Test
|
||||
{
|
||||
Vec3<real> r = {1.5 * sigma, 0.0, 0.0};
|
||||
auto result = lj.calc_force_and_energy(r);
|
||||
results->energy_values[5] = result.energy;
|
||||
results->force_values[5] = result.force;
|
||||
results->attractive_region_pass =
|
||||
(result.energy < 0.0) && (result.force.x < 0.0);
|
||||
}
|
||||
|
||||
// Arbitrary Direction Test
|
||||
{
|
||||
Vec3<real> r = {1.0, 1.0, 1.0};
|
||||
auto result = lj.calc_force_and_energy(r);
|
||||
results->energy_values[6] = result.energy;
|
||||
results->force_values[6] = result.force;
|
||||
|
||||
real r_mag = sqrt(r.squared_norm2());
|
||||
Vec3<real> normalized_r = r.scale(1.0 / r_mag);
|
||||
real force_dot_r = result.force.x * normalized_r.x +
|
||||
result.force.y * normalized_r.y +
|
||||
result.force.z * normalized_r.z;
|
||||
|
||||
results->arbitrary_direction_pass =
|
||||
(force_dot_r < 0.0) &&
|
||||
(fabs(result.force.x - result.force.y) < tolerance) &&
|
||||
(fabs(result.force.y - result.force.z) < tolerance);
|
||||
}
|
||||
|
||||
// Parameter Variation Test
|
||||
{
|
||||
real new_sigma = 2.0;
|
||||
real new_epsilon = 0.5;
|
||||
real new_r_cutoff = 5.0;
|
||||
|
||||
LennardJones lj2(new_sigma, new_epsilon, new_r_cutoff);
|
||||
|
||||
Vec3<real> r = {2.0, 0.0, 0.0};
|
||||
auto result1 = lj.calc_force_and_energy(r);
|
||||
auto result2 = lj2.calc_force_and_energy(r);
|
||||
|
||||
results->energy_values[7] = result2.energy;
|
||||
results->force_values[7] = result2.force;
|
||||
|
||||
results->parameter_variation_pass = (result1.energy != result2.energy) &&
|
||||
(result1.force.x != result2.force.x);
|
||||
}
|
||||
|
||||
// Exact Value Check Test
|
||||
{
|
||||
LennardJones lj_exact(1.0, 1.0, 3.0);
|
||||
Vec3<real> r = {1.5, 0.0, 0.0};
|
||||
auto result = lj_exact.calc_force_and_energy(r);
|
||||
|
||||
results->energy_values[8] = result.energy;
|
||||
results->force_values[8] = result.force;
|
||||
|
||||
real expected_energy = 4.0 * (pow(1.0 / 1.5, 12) - pow(1.0 / 1.5, 6));
|
||||
real expected_force =
|
||||
24.0 * (pow(1.0 / 1.5, 6) - 2.0 * pow(1.0 / 1.5, 12)) / 1.5;
|
||||
|
||||
results->exact_value_check_pass =
|
||||
(fabs(result.energy - expected_energy) < tolerance) &&
|
||||
(fabs(result.force.x + expected_force) < tolerance) &&
|
||||
(fabs(result.force.y) < tolerance) &&
|
||||
(fabs(result.force.z) < tolerance);
|
||||
}
|
||||
|
||||
// Near Cutoff Test
|
||||
{
|
||||
real inside_cutoff = r_cutoff - 0.01;
|
||||
real outside_cutoff = r_cutoff + 0.01;
|
||||
|
||||
Vec3<real> r_inside = {inside_cutoff, 0.0, 0.0};
|
||||
Vec3<real> r_outside = {outside_cutoff, 0.0, 0.0};
|
||||
|
||||
auto result_inside = lj.calc_force_and_energy(r_inside);
|
||||
auto result_outside = lj.calc_force_and_energy(r_outside);
|
||||
|
||||
results->energy_values[9] = result_inside.energy;
|
||||
results->force_values[9] = result_inside.force;
|
||||
|
||||
results->near_cutoff_pass =
|
||||
(result_inside.energy != 0.0) && (result_inside.force.x != 0.0) &&
|
||||
(result_outside.energy == 0.0) &&
|
||||
vec3_near(Vec3<real>{0.0, 0.0, 0.0}, result_outside.force, tolerance);
|
||||
}
|
||||
}
|
||||
|
||||
// Helper class for CUDA error checking
|
||||
class CudaErrorCheck {
|
||||
public:
|
||||
static void checkAndThrow(cudaError_t err, const char *msg) {
|
||||
if (err != cudaSuccess) {
|
||||
std::string error_message =
|
||||
std::string(msg) + ": " + cudaGetErrorString(err);
|
||||
throw std::runtime_error(error_message);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Google Test wrapper that runs the device tests
|
||||
class LennardJonesCudaTest : public ::testing::Test {
|
||||
protected:
|
||||
void SetUp() override {
|
||||
// Allocate device memory for results
|
||||
CudaErrorCheck::checkAndThrow(
|
||||
cudaMalloc(&d_results, sizeof(TestResults)),
|
||||
"Failed to allocate device memory for test results");
|
||||
}
|
||||
|
||||
void TearDown() override {
|
||||
if (d_results) {
|
||||
cudaFree(d_results);
|
||||
d_results = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
// Helper function to run tests on device and get results
|
||||
TestResults runDeviceTests() {
|
||||
TestResults h_results;
|
||||
|
||||
// Clear device memory
|
||||
CudaErrorCheck::checkAndThrow(cudaMemset(d_results, 0, sizeof(TestResults)),
|
||||
"Failed to clear device memory");
|
||||
|
||||
// Run kernel with a single thread
|
||||
lennard_jones_test_kernel<<<1, 1>>>(d_results);
|
||||
|
||||
// Check for kernel launch errors
|
||||
CudaErrorCheck::checkAndThrow(cudaGetLastError(), "Kernel launch failed");
|
||||
|
||||
// Wait for kernel to complete
|
||||
CudaErrorCheck::checkAndThrow(cudaDeviceSynchronize(),
|
||||
"Kernel execution failed");
|
||||
|
||||
// Copy results back to host
|
||||
CudaErrorCheck::checkAndThrow(cudaMemcpy(&h_results, d_results,
|
||||
sizeof(TestResults),
|
||||
cudaMemcpyDeviceToHost),
|
||||
"Failed to copy results from device");
|
||||
|
||||
return h_results;
|
||||
}
|
||||
|
||||
TestResults *d_results = nullptr;
|
||||
};
|
||||
|
||||
// Define the actual test cases
|
||||
TEST_F(LennardJonesCudaTest, DeviceZeroDistance) {
|
||||
auto results = runDeviceTests();
|
||||
EXPECT_TRUE(results.zero_distance_pass)
|
||||
<< "Zero distance test failed on device. Energy: "
|
||||
<< results.energy_values[0] << ", Force: (" << results.force_values[0].x
|
||||
<< ", " << results.force_values[0].y << ", " << results.force_values[0].z
|
||||
<< ")";
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesCudaTest, DeviceBeyondCutoff) {
|
||||
auto results = runDeviceTests();
|
||||
EXPECT_TRUE(results.beyond_cutoff_pass)
|
||||
<< "Beyond cutoff test failed on device. Energy: "
|
||||
<< results.energy_values[1];
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesCudaTest, DeviceAtMinimum) {
|
||||
auto results = runDeviceTests();
|
||||
EXPECT_TRUE(results.at_minimum_pass)
|
||||
<< "At minimum test failed on device. Energy: "
|
||||
<< results.energy_values[2];
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesCudaTest, DeviceAtEquilibrium) {
|
||||
auto results = runDeviceTests();
|
||||
EXPECT_TRUE(results.at_equilibrium_pass)
|
||||
<< "At equilibrium test failed on device. Energy: "
|
||||
<< results.energy_values[3] << ", Force x: " << results.force_values[3].x;
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesCudaTest, DeviceRepulsiveRegion) {
|
||||
auto results = runDeviceTests();
|
||||
EXPECT_TRUE(results.repulsive_region_pass)
|
||||
<< "Repulsive region test failed on device. Energy: "
|
||||
<< results.energy_values[4] << ", Force x: " << results.force_values[4].x;
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesCudaTest, DeviceAttractiveRegion) {
|
||||
auto results = runDeviceTests();
|
||||
EXPECT_TRUE(results.attractive_region_pass)
|
||||
<< "Attractive region test failed on device. Energy: "
|
||||
<< results.energy_values[5] << ", Force x: " << results.force_values[5].x;
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesCudaTest, DeviceArbitraryDirection) {
|
||||
auto results = runDeviceTests();
|
||||
EXPECT_TRUE(results.arbitrary_direction_pass)
|
||||
<< "Arbitrary direction test failed on device.";
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesCudaTest, DeviceParameterVariation) {
|
||||
auto results = runDeviceTests();
|
||||
EXPECT_TRUE(results.parameter_variation_pass)
|
||||
<< "Parameter variation test failed on device.";
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesCudaTest, DeviceExactValueCheck) {
|
||||
auto results = runDeviceTests();
|
||||
EXPECT_TRUE(results.exact_value_check_pass)
|
||||
<< "Exact value check test failed on device. Energy: "
|
||||
<< results.energy_values[8] << ", Force x: " << results.force_values[8].x;
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesCudaTest, DeviceNearCutoff) {
|
||||
auto results = runDeviceTests();
|
||||
EXPECT_TRUE(results.near_cutoff_pass)
|
||||
<< "Near cutoff test failed on device. Inside energy: "
|
||||
<< results.energy_values[9];
|
||||
}
|
|
@ -1,8 +1,9 @@
|
|||
include_directories(${gtest_SOURCE_DIR}/include ${gtest_SOURCE_DIR})
|
||||
|
||||
add_executable(Unit_Tests_run
|
||||
test_example.cpp
|
||||
add_executable(${NAME}_tests
|
||||
test_potential.cpp
|
||||
)
|
||||
|
||||
target_link_libraries(Unit_Tests_run gtest gtest_main)
|
||||
target_link_libraries(Unit_Tests_run ${CMAKE_PROJECT_NAME}_lib)
|
||||
target_link_libraries(${NAME}_tests gtest gtest_main)
|
||||
target_link_libraries(${NAME}_tests ${CMAKE_PROJECT_NAME}_cuda_lib)
|
||||
add_test(NAME ${NAME}Tests COMMAND ${CMAKE_BINARY_DIR}/tests/unit_tests/${NAME}_tests)
|
||||
|
|
174
tests/unit_tests/test_potential.cpp
Normal file
174
tests/unit_tests/test_potential.cpp
Normal file
|
@ -0,0 +1,174 @@
|
|||
#include "pair_potentials.cuh"
|
||||
#include "precision.hpp"
|
||||
#include "gtest/gtest.h"
|
||||
#include <cmath>
|
||||
|
||||
class LennardJonesTest : public ::testing::Test {
|
||||
protected:
|
||||
void SetUp() override {
|
||||
// Default parameters
|
||||
sigma = 1.0;
|
||||
epsilon = 1.0;
|
||||
r_cutoff = 2.5;
|
||||
|
||||
// Create default LennardJones object
|
||||
lj = new LennardJones(sigma, epsilon, r_cutoff);
|
||||
}
|
||||
|
||||
void TearDown() override { delete lj; }
|
||||
|
||||
real sigma;
|
||||
real epsilon;
|
||||
real r_cutoff;
|
||||
LennardJones *lj;
|
||||
|
||||
// Helper function to compare Vec3 values with tolerance
|
||||
void expect_vec3_near(const Vec3<real> &expected, const Vec3<real> &actual,
|
||||
real tolerance) {
|
||||
EXPECT_NEAR(expected.x, actual.x, tolerance);
|
||||
EXPECT_NEAR(expected.y, actual.y, tolerance);
|
||||
EXPECT_NEAR(expected.z, actual.z, tolerance);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_F(LennardJonesTest, ZeroDistance) {
|
||||
// At zero distance, the calculation should return zero force and energy
|
||||
Vec3<real> r = {0.0, 0.0, 0.0};
|
||||
auto result = lj->calc_force_and_energy(r);
|
||||
|
||||
EXPECT_EQ(0.0, result.energy);
|
||||
expect_vec3_near({0.0, 0.0, 0.0}, result.force, 1e-10);
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesTest, BeyondCutoff) {
|
||||
// Distance beyond cutoff should return zero force and energy
|
||||
Vec3<real> r = {3.0, 0.0, 0.0}; // 3.0 > r_cutoff (2.5)
|
||||
auto result = lj->calc_force_and_energy(r);
|
||||
|
||||
EXPECT_EQ(0.0, result.energy);
|
||||
expect_vec3_near({0.0, 0.0, 0.0}, result.force, 1e-10);
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesTest, AtMinimum) {
|
||||
// The LJ potential has a minimum at r = 2^(1/6) * sigma
|
||||
real min_dist = std::pow(2.0, 1.0 / 6.0) * sigma;
|
||||
Vec3<real> r = {min_dist, 0.0, 0.0};
|
||||
auto result = lj->calc_force_and_energy(r);
|
||||
|
||||
// At minimum, force should be close to zero
|
||||
EXPECT_NEAR(-epsilon, result.energy, 1e-10);
|
||||
expect_vec3_near({0.0, 0.0, 0.0}, result.force, 1e-10);
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesTest, AtEquilibrium) {
|
||||
// At r = sigma, the energy should be zero and force should be repulsive
|
||||
Vec3<real> r = {sigma, 0.0, 0.0};
|
||||
auto result = lj->calc_force_and_energy(r);
|
||||
|
||||
EXPECT_NEAR(0.0, result.energy, 1e-10);
|
||||
EXPECT_GT(result.force.x,
|
||||
0.0); // Force should be repulsive (positive x-direction)
|
||||
EXPECT_NEAR(0.0, result.force.y, 1e-10);
|
||||
EXPECT_NEAR(0.0, result.force.z, 1e-10);
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesTest, RepulsiveRegion) {
|
||||
// Test in the repulsive region (r < sigma)
|
||||
Vec3<real> r = {0.8 * sigma, 0.0, 0.0};
|
||||
auto result = lj->calc_force_and_energy(r);
|
||||
|
||||
// Energy should be positive and force should be repulsive
|
||||
EXPECT_GT(result.energy, 0.0);
|
||||
EXPECT_GT(result.force.x, 0.0); // Force should be repulsive
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesTest, AttractiveRegion) {
|
||||
// Test in the attractive region (sigma < r < r_min)
|
||||
Vec3<real> r = {1.5 * sigma, 0.0, 0.0};
|
||||
auto result = lj->calc_force_and_energy(r);
|
||||
|
||||
// Energy should be negative and force should be attractive
|
||||
EXPECT_LT(result.energy, 0.0);
|
||||
EXPECT_LT(result.force.x,
|
||||
0.0); // Force should be attractive (negative x-direction)
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesTest, ArbitraryDirection) {
|
||||
// Test with a vector in an arbitrary direction
|
||||
Vec3<real> r = {1.0, 1.0, 1.0};
|
||||
auto result = lj->calc_force_and_energy(r);
|
||||
|
||||
// The force should be in the same direction as r but opposite sign
|
||||
// (attractive region)
|
||||
real r_mag = std::sqrt(r.squared_norm2());
|
||||
|
||||
// Calculate expected force direction (should be along -r)
|
||||
Vec3<real> normalized_r = r.scale(1.0 / r_mag);
|
||||
real force_dot_r = result.force.x * normalized_r.x +
|
||||
result.force.y * normalized_r.y +
|
||||
result.force.z * normalized_r.z;
|
||||
|
||||
// In this case, we're at r = sqrt(3) * sigma which is in attractive region
|
||||
EXPECT_LT(force_dot_r, 0.0); // Force should be attractive
|
||||
|
||||
// Force should be symmetric in all dimensions for this vector
|
||||
EXPECT_NEAR(result.force.x, result.force.y, 1e-10);
|
||||
EXPECT_NEAR(result.force.y, result.force.z, 1e-10);
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesTest, ParameterVariation) {
|
||||
// Test with different parameter values
|
||||
real new_sigma = 2.0;
|
||||
real new_epsilon = 0.5;
|
||||
real new_r_cutoff = 5.0;
|
||||
|
||||
LennardJones lj2(new_sigma, new_epsilon, new_r_cutoff);
|
||||
|
||||
Vec3<real> r = {2.0, 0.0, 0.0};
|
||||
auto result1 = lj->calc_force_and_energy(r);
|
||||
auto result2 = lj2.calc_force_and_energy(r);
|
||||
|
||||
// Results should be different with different parameters
|
||||
EXPECT_NE(result1.energy, result2.energy);
|
||||
EXPECT_NE(result1.force.x, result2.force.x);
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesTest, ExactValueCheck) {
|
||||
// Test with pre-calculated values for a specific case
|
||||
LennardJones lj_exact(1.0, 1.0, 3.0);
|
||||
Vec3<real> r = {1.5, 0.0, 0.0};
|
||||
auto result = lj_exact.calc_force_and_energy(r);
|
||||
|
||||
// Pre-calculated values (you may need to adjust these based on your specific
|
||||
// implementation)
|
||||
real expected_energy =
|
||||
4.0 * (std::pow(1.0 / 1.5, 12) - std::pow(1.0 / 1.5, 6));
|
||||
real expected_force =
|
||||
24.0 * (std::pow(1.0 / 1.5, 6) - 2.0 * std::pow(1.0 / 1.5, 12)) / 1.5;
|
||||
|
||||
EXPECT_NEAR(expected_energy, result.energy, 1e-10);
|
||||
EXPECT_NEAR(-expected_force, result.force.x,
|
||||
1e-10); // Negative because force is attractive
|
||||
EXPECT_NEAR(0.0, result.force.y, 1e-10);
|
||||
EXPECT_NEAR(0.0, result.force.z, 1e-10);
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesTest, NearCutoff) {
|
||||
// Test behavior just inside and just outside the cutoff
|
||||
real inside_cutoff = r_cutoff - 0.01;
|
||||
real outside_cutoff = r_cutoff + 0.01;
|
||||
|
||||
Vec3<real> r_inside = {inside_cutoff, 0.0, 0.0};
|
||||
Vec3<real> r_outside = {outside_cutoff, 0.0, 0.0};
|
||||
|
||||
auto result_inside = lj->calc_force_and_energy(r_inside);
|
||||
auto result_outside = lj->calc_force_and_energy(r_outside);
|
||||
|
||||
// Inside should have non-zero values
|
||||
EXPECT_NE(0.0, result_inside.energy);
|
||||
EXPECT_NE(0.0, result_inside.force.x);
|
||||
|
||||
// Outside should be zero
|
||||
EXPECT_EQ(0.0, result_outside.energy);
|
||||
expect_vec3_near({0.0, 0.0, 0.0}, result_outside.force, 1e-10);
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue