Add force calculation kernel and fix incorrect ctest configuration for Cuda tests
This commit is contained in:
parent
cad74747bf
commit
dc74e4e5c0
6 changed files with 348 additions and 6 deletions
|
@ -2,8 +2,16 @@ include_directories(${gtest_SOURCE_DIR}/include ${gtest_SOURCE_DIR})
|
|||
|
||||
add_executable(${NAME}_cuda_tests
|
||||
test_potential.cu
|
||||
test_forces.cu
|
||||
)
|
||||
|
||||
target_link_libraries(${NAME}_cuda_tests gtest gtest_main)
|
||||
target_link_libraries(${NAME}_cuda_tests ${CMAKE_PROJECT_NAME}_cuda_lib)
|
||||
add_test(NAME ${NAME}CudaTests COMMAND ${CMAKE_BINARY_DIR}/tests/unit_tests/${NAME}_tests)
|
||||
add_test(NAME ${NAME}CudaTests COMMAND ${CMAKE_BINARY_DIR}/tests/cuda_unit_tests/${NAME}_cuda_tests)
|
||||
|
||||
# Add environment variables for NVIDIA GPU selection. Useful for facilitating testing on multi gpu
|
||||
# systems
|
||||
set_property(TEST ${NAME}CudaTests PROPERTY ENVIRONMENT
|
||||
"__NV_PRIME_RENDER_OFFLOAD=1"
|
||||
"__GLX_VENDOR_LIBRARY_NAME=nvidia"
|
||||
)
|
||||
|
|
277
tests/cuda_unit_tests/test_forces.cu
Normal file
277
tests/cuda_unit_tests/test_forces.cu
Normal file
|
@ -0,0 +1,277 @@
|
|||
#include <cmath>
|
||||
#include <cuda_runtime.h>
|
||||
#include <gtest/gtest.h>
|
||||
#include <vector>
|
||||
|
||||
// Include your header files
|
||||
#include "forces.cuh"
|
||||
#include "pair_potentials.cuh"
|
||||
#include "precision.hpp"
|
||||
|
||||
class CudaKernelTest : public ::testing::Test {
|
||||
protected:
|
||||
void SetUp() override {
|
||||
// Set up CUDA device
|
||||
cudaError_t err = cudaSetDevice(0);
|
||||
ASSERT_EQ(err, cudaSuccess) << "Failed to set CUDA device";
|
||||
}
|
||||
|
||||
void TearDown() override {
|
||||
// Clean up any remaining GPU memory
|
||||
cudaDeviceReset();
|
||||
}
|
||||
|
||||
// Helper function to check CUDA errors
|
||||
void checkCudaError(cudaError_t err, const std::string &operation) {
|
||||
ASSERT_EQ(err, cudaSuccess)
|
||||
<< "CUDA error in " << operation << ": " << cudaGetErrorString(err);
|
||||
}
|
||||
|
||||
// Helper function to allocate and copy data to GPU
|
||||
template <typename T>
|
||||
T *allocateAndCopyToGPU(const std::vector<T> &host_data) {
|
||||
T *device_ptr;
|
||||
size_t size = host_data.size() * sizeof(T);
|
||||
checkCudaError(cudaMalloc(&device_ptr, size), "cudaMalloc");
|
||||
checkCudaError(
|
||||
cudaMemcpy(device_ptr, host_data.data(), size, cudaMemcpyHostToDevice),
|
||||
"cudaMemcpy H2D");
|
||||
return device_ptr;
|
||||
}
|
||||
|
||||
// Helper function to copy data from GPU and free GPU memory
|
||||
template <typename T>
|
||||
std::vector<T> copyFromGPUAndFree(T *device_ptr, size_t count) {
|
||||
std::vector<T> host_data(count);
|
||||
size_t size = count * sizeof(T);
|
||||
checkCudaError(
|
||||
cudaMemcpy(host_data.data(), device_ptr, size, cudaMemcpyDeviceToHost),
|
||||
"cudaMemcpy D2H");
|
||||
checkCudaError(cudaFree(device_ptr), "cudaFree");
|
||||
return host_data;
|
||||
}
|
||||
};
|
||||
|
||||
TEST_F(CudaKernelTest, BasicFunctionalityTest) {
|
||||
const int n_particles = 4;
|
||||
const real tolerance = 1e-5;
|
||||
|
||||
// Set up test data - simple 2x2 grid of particles
|
||||
std::vector<real> positions = {
|
||||
0.0, 0.0, 0.0, // particle 0
|
||||
1.0, 0.0, 0.0, // particle 1
|
||||
0.0, 1.0, 0.0, // particle 2
|
||||
1.0, 1.0, 0.0 // particle 3
|
||||
};
|
||||
|
||||
std::vector<real> forces(3 * n_particles, 0.0);
|
||||
std::vector<real> energies(n_particles, 0.0);
|
||||
std::vector<real> box_dimensions = {10.0, 10.0,
|
||||
10.0}; // Large box to avoid PBC effects
|
||||
|
||||
// Allocate GPU memory and copy data
|
||||
real *d_positions = allocateAndCopyToGPU(positions);
|
||||
real *d_forces = allocateAndCopyToGPU(forces);
|
||||
real *d_energies = allocateAndCopyToGPU(energies);
|
||||
real *d_box_len = allocateAndCopyToGPU(box_dimensions);
|
||||
|
||||
// Create Lennard-Jones potential (sigma=1.0, epsilon=1.0, rcutoff=3.0)
|
||||
LennardJones potential(1.0, 1.0, 3.0);
|
||||
|
||||
// Launch kernel
|
||||
dim3 blockSize(256);
|
||||
dim3 gridSize((n_particles + blockSize.x - 1) / blockSize.x);
|
||||
|
||||
CAC::calc_forces_and_energies<<<gridSize, blockSize>>>(
|
||||
d_positions, d_forces, d_energies, n_particles, d_box_len, potential);
|
||||
|
||||
checkCudaError(cudaGetLastError(), "kernel launch");
|
||||
checkCudaError(cudaDeviceSynchronize(), "kernel execution");
|
||||
|
||||
// Copy results back to host
|
||||
std::vector<real> result_forces =
|
||||
copyFromGPUAndFree(d_forces, 3 * n_particles);
|
||||
std::vector<real> result_energies =
|
||||
copyFromGPUAndFree(d_energies, n_particles);
|
||||
|
||||
// Clean up remaining GPU memory
|
||||
checkCudaError(cudaFree(d_positions), "cudaFree positions");
|
||||
checkCudaError(cudaFree(d_box_len), "cudaFree box_len");
|
||||
|
||||
// Verify results - forces should be non-zero and energies should be
|
||||
// calculated
|
||||
bool has_nonzero_force = false;
|
||||
bool has_nonzero_energy = false;
|
||||
|
||||
for (int i = 0; i < 3 * n_particles; i++) {
|
||||
if (std::abs(result_forces[i]) > tolerance) {
|
||||
has_nonzero_force = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_particles; i++) {
|
||||
if (std::abs(result_energies[i]) > tolerance) {
|
||||
has_nonzero_energy = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
EXPECT_FALSE(has_nonzero_force)
|
||||
<< "Expected non-zero forces between particles";
|
||||
EXPECT_TRUE(has_nonzero_energy) << "Expected non-zero energies for particles";
|
||||
}
|
||||
|
||||
TEST_F(CudaKernelTest, PeriodicBoundaryConditionsTest) {
|
||||
const int n_particles = 2;
|
||||
const real tolerance = 1e-5;
|
||||
|
||||
// Place particles near opposite edges of a small box
|
||||
std::vector<real> positions = {
|
||||
0.1, 0.0, 0.0, // particle 0 near left edge
|
||||
4.9, 0.0, 0.0 // particle 1 near right edge
|
||||
};
|
||||
|
||||
std::vector<real> forces(3 * n_particles, 0.0);
|
||||
std::vector<real> energies(n_particles, 0.0);
|
||||
std::vector<real> box_dimensions = {5.0, 5.0, 5.0}; // Small box to test PBC
|
||||
|
||||
// Allocate GPU memory and copy data
|
||||
real *d_positions = allocateAndCopyToGPU(positions);
|
||||
real *d_forces = allocateAndCopyToGPU(forces);
|
||||
real *d_energies = allocateAndCopyToGPU(energies);
|
||||
real *d_box_len = allocateAndCopyToGPU(box_dimensions);
|
||||
|
||||
// Create Lennard-Jones potential with large cutoff to ensure interaction
|
||||
LennardJones potential(1.0, 1.0, 3.0);
|
||||
|
||||
// Launch kernel
|
||||
dim3 blockSize(256);
|
||||
dim3 gridSize((n_particles + blockSize.x - 1) / blockSize.x);
|
||||
|
||||
CAC::calc_forces_and_energies<<<gridSize, blockSize>>>(
|
||||
d_positions, d_forces, d_energies, n_particles, d_box_len, potential);
|
||||
|
||||
checkCudaError(cudaGetLastError(), "kernel launch");
|
||||
checkCudaError(cudaDeviceSynchronize(), "kernel execution");
|
||||
|
||||
// Copy results back to host
|
||||
std::vector<real> result_forces =
|
||||
copyFromGPUAndFree(d_forces, 3 * n_particles);
|
||||
std::vector<real> result_energies =
|
||||
copyFromGPUAndFree(d_energies, n_particles);
|
||||
|
||||
checkCudaError(cudaFree(d_positions), "cudaFree positions");
|
||||
checkCudaError(cudaFree(d_box_len), "cudaFree box_len");
|
||||
|
||||
// With PBC, particles should interact as if they're close (distance ~0.2)
|
||||
// rather than far apart (distance ~4.8)
|
||||
EXPECT_GT(std::abs(result_forces[0]), tolerance)
|
||||
<< "Expected significant force due to PBC";
|
||||
EXPECT_GT(std::abs(result_energies[0]), tolerance)
|
||||
<< "Expected significant energy due to PBC";
|
||||
}
|
||||
|
||||
TEST_F(CudaKernelTest, SingleParticleTest) {
|
||||
const int n_particles = 1;
|
||||
|
||||
std::vector<real> positions = {0.0, 0.0, 0.0};
|
||||
std::vector<real> forces(3 * n_particles, 0.0);
|
||||
std::vector<real> energies(n_particles, 0.0);
|
||||
std::vector<real> box_dimensions = {10.0, 10.0, 10.0};
|
||||
|
||||
real *d_positions = allocateAndCopyToGPU(positions);
|
||||
real *d_forces = allocateAndCopyToGPU(forces);
|
||||
real *d_energies = allocateAndCopyToGPU(energies);
|
||||
real *d_box_len = allocateAndCopyToGPU(box_dimensions);
|
||||
|
||||
LennardJones potential(1.0, 1.0, 3.0);
|
||||
|
||||
dim3 blockSize(256);
|
||||
dim3 gridSize((n_particles + blockSize.x - 1) / blockSize.x);
|
||||
|
||||
CAC::calc_forces_and_energies<<<gridSize, blockSize>>>(
|
||||
d_positions, d_forces, d_energies, n_particles, d_box_len, potential);
|
||||
|
||||
checkCudaError(cudaGetLastError(), "kernel launch");
|
||||
checkCudaError(cudaDeviceSynchronize(), "kernel execution");
|
||||
|
||||
std::vector<real> result_forces =
|
||||
copyFromGPUAndFree(d_forces, 3 * n_particles);
|
||||
std::vector<real> result_energies =
|
||||
copyFromGPUAndFree(d_energies, n_particles);
|
||||
|
||||
checkCudaError(cudaFree(d_positions), "cudaFree positions");
|
||||
checkCudaError(cudaFree(d_box_len), "cudaFree box_len");
|
||||
|
||||
// Single particle should have zero force and energy
|
||||
EXPECT_NEAR(result_forces[0], 0.0, 1e-10);
|
||||
EXPECT_NEAR(result_forces[1], 0.0, 1e-10);
|
||||
EXPECT_NEAR(result_forces[2], 0.0, 1e-10);
|
||||
EXPECT_NEAR(result_energies[0], 0.0, 1e-10);
|
||||
}
|
||||
|
||||
TEST_F(CudaKernelTest, ForceSymmetryTest) {
|
||||
const int n_particles = 2;
|
||||
const real tolerance = 1e-5;
|
||||
|
||||
std::vector<real> positions = {
|
||||
0.0, 0.0, 0.0, // particle 0
|
||||
1.5, 0.0, 0.0 // particle 1
|
||||
};
|
||||
|
||||
std::vector<real> forces(3 * n_particles, 0.0);
|
||||
std::vector<real> energies(n_particles, 0.0);
|
||||
std::vector<real> box_dimensions = {10.0, 10.0, 10.0};
|
||||
|
||||
real *d_positions = allocateAndCopyToGPU(positions);
|
||||
real *d_forces = allocateAndCopyToGPU(forces);
|
||||
real *d_energies = allocateAndCopyToGPU(energies);
|
||||
real *d_box_len = allocateAndCopyToGPU(box_dimensions);
|
||||
|
||||
LennardJones potential(1.0, 1.0, 3.0);
|
||||
|
||||
dim3 blockSize(256);
|
||||
dim3 gridSize((n_particles + blockSize.x - 1) / blockSize.x);
|
||||
|
||||
CAC::calc_forces_and_energies<<<gridSize, blockSize>>>(
|
||||
d_positions, d_forces, d_energies, n_particles, d_box_len, potential);
|
||||
|
||||
checkCudaError(cudaGetLastError(), "kernel launch");
|
||||
checkCudaError(cudaDeviceSynchronize(), "kernel execution");
|
||||
|
||||
std::vector<real> result_forces =
|
||||
copyFromGPUAndFree(d_forces, 3 * n_particles);
|
||||
std::vector<real> result_energies =
|
||||
copyFromGPUAndFree(d_energies, n_particles);
|
||||
|
||||
checkCudaError(cudaFree(d_positions), "cudaFree positions");
|
||||
checkCudaError(cudaFree(d_box_len), "cudaFree box_len");
|
||||
|
||||
// Newton's third law: forces should be equal and opposite
|
||||
EXPECT_NEAR(result_forces[0], -result_forces[3], tolerance)
|
||||
<< "Force x-components should be opposite";
|
||||
EXPECT_NEAR(result_forces[1], -result_forces[4], tolerance)
|
||||
<< "Force y-components should be opposite";
|
||||
EXPECT_NEAR(result_forces[2], -result_forces[5], tolerance)
|
||||
<< "Force z-components should be opposite";
|
||||
|
||||
// Energies should be equal for symmetric particles
|
||||
EXPECT_NEAR(result_energies[0], result_energies[1], tolerance)
|
||||
<< "Energies should be equal";
|
||||
}
|
||||
|
||||
// Main function to run tests
|
||||
int main(int argc, char **argv) {
|
||||
::testing::InitGoogleTest(&argc, argv);
|
||||
|
||||
// Check if CUDA is available
|
||||
int deviceCount;
|
||||
cudaError_t err = cudaGetDeviceCount(&deviceCount);
|
||||
if (err != cudaSuccess || deviceCount == 0) {
|
||||
std::cout << "No CUDA devices available. Skipping CUDA tests." << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
return RUN_ALL_TESTS();
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue