Add basic LJ potential*
- Add PairPotential Abstract class - Add Lennard-Jones potential that should work with both CUDA and C++ code - Add tests on HOST side for LJ potential
This commit is contained in:
parent
f15eb0cf51
commit
5155ec21aa
11 changed files with 114 additions and 154 deletions
91
kernels/pair_potentials.cuh
Normal file
91
kernels/pair_potentials.cuh
Normal file
|
@ -0,0 +1,91 @@
|
|||
#ifndef POTENTIALS_H
|
||||
#define POTENTIALS_H
|
||||
|
||||
#include "precision.hpp"
|
||||
#include "vec3.h"
|
||||
|
||||
#ifdef __CUDACC__
|
||||
#define CUDA_CALLABLE __host__ __device__
|
||||
#else
|
||||
#define CUDA_CALLABLE
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Result struct for the Pair Potential
|
||||
*/
|
||||
struct ForceAndEnergy {
|
||||
real energy;
|
||||
Vec3<real> force;
|
||||
|
||||
CUDA_CALLABLE inline static ForceAndEnergy zero() {
|
||||
return {0.0, {0.0, 0.0, 0.0}};
|
||||
};
|
||||
};
|
||||
|
||||
/**
|
||||
* Abstract implementation of a Pair Potential.
|
||||
* Pair potentials are potentials which depend solely on the distance
|
||||
* between two particles. These do not include multi-body potentials such as
|
||||
* EAM
|
||||
*
|
||||
*/
|
||||
struct PairPotential {
|
||||
real m_rcutoffsq;
|
||||
|
||||
PairPotential(real rcutoff) : m_rcutoffsq(rcutoff * rcutoff) {};
|
||||
#ifdef __CUDACC__
|
||||
CUDA_CALLABLE ~PairPotential();
|
||||
#else
|
||||
virtual ~PairPotential() = 0;
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Calculate the force and energy for a specific atom pair based on a
|
||||
* displacement vector r.
|
||||
*/
|
||||
CUDA_CALLABLE virtual ForceAndEnergy calc_force_and_energy(Vec3<real> r) = 0;
|
||||
};
|
||||
|
||||
/**
|
||||
* Calculate the Lennard-Jones energy and force for the current particle pair
|
||||
* described by displacement vector r
|
||||
*/
|
||||
struct LennardJones : PairPotential {
|
||||
real m_epsilon;
|
||||
real m_sigma;
|
||||
|
||||
CUDA_CALLABLE LennardJones(real sigma, real epsilon, real rcutoff)
|
||||
: PairPotential(rcutoff), m_epsilon(epsilon), m_sigma(sigma) {};
|
||||
|
||||
CUDA_CALLABLE ForceAndEnergy calc_force_and_energy(Vec3<real> r) {
|
||||
real rmagsq = r.squared_norm2();
|
||||
if (rmagsq < this->m_rcutoffsq && rmagsq > 0.0) {
|
||||
real inv_rmag = 1 / std::sqrt(rmagsq);
|
||||
|
||||
// Pre-Compute the terms (doing this saves on multiple devisions/pow
|
||||
// function call)
|
||||
real sigma_r = m_sigma * inv_rmag;
|
||||
real sigma_r6 = sigma_r * sigma_r * sigma_r * sigma_r * sigma_r * sigma_r;
|
||||
real sigma_r12 = sigma_r6 * sigma_r6;
|
||||
|
||||
// Get the energy
|
||||
real energy = 4.0 * m_epsilon * (sigma_r12 - sigma_r6);
|
||||
|
||||
// Get the force vector
|
||||
real force_mag =
|
||||
4.0 * m_epsilon *
|
||||
(12.0 * sigma_r12 * inv_rmag - 6.0 * sigma_r6 * inv_rmag);
|
||||
Vec3<real> force = r.scale(force_mag * inv_rmag);
|
||||
|
||||
return {energy, force};
|
||||
|
||||
} else {
|
||||
return ForceAndEnergy::zero();
|
||||
}
|
||||
};
|
||||
|
||||
~LennardJones() {};
|
||||
};
|
||||
|
||||
PairPotential::~PairPotential() {};
|
||||
#endif
|
Loading…
Add table
Add a link
Reference in a new issue