Move pair potentials and change to traditional Functor
This commit is contained in:
parent
a638c4f388
commit
2d948a7e76
5 changed files with 122 additions and 94 deletions
|
@ -1,7 +1,7 @@
|
|||
project(${NAME}_cuda_lib CUDA CXX)
|
||||
|
||||
set(HEADER_FILES
|
||||
pair_potentials.cuh
|
||||
potentials/pair_potentials.cuh
|
||||
forces.cuh
|
||||
)
|
||||
set(SOURCE_FILES
|
||||
|
|
|
@ -1,91 +0,0 @@
|
|||
#ifndef POTENTIALS_CUH
|
||||
#define POTENTIALS_CUH
|
||||
|
||||
#include "precision.hpp"
|
||||
#include "vec3.h"
|
||||
|
||||
#ifdef __CUDACC__
|
||||
#define CUDA_CALLABLE __host__ __device__
|
||||
#else
|
||||
#define CUDA_CALLABLE
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Result struct for the Pair Potential
|
||||
*/
|
||||
struct ForceAndEnergy {
|
||||
real energy;
|
||||
Vec3<real> force;
|
||||
|
||||
CUDA_CALLABLE inline static ForceAndEnergy zero() {
|
||||
return {0.0, {0.0, 0.0, 0.0}};
|
||||
};
|
||||
};
|
||||
|
||||
/**
|
||||
* Abstract implementation of a Pair Potential.
|
||||
* Pair potentials are potentials which depend solely on the distance
|
||||
* between two particles. These do not include multi-body potentials such as
|
||||
* EAM
|
||||
*
|
||||
*/
|
||||
struct PairPotential {
|
||||
real m_rcutoffsq;
|
||||
|
||||
CUDA_CALLABLE PairPotential(real rcutoff) : m_rcutoffsq(rcutoff * rcutoff) {};
|
||||
#ifdef __CUDACC__
|
||||
CUDA_CALLABLE ~PairPotential();
|
||||
#else
|
||||
virtual ~PairPotential() = 0;
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Calculate the force and energy for a specific atom pair based on a
|
||||
* displacement vector r.
|
||||
*/
|
||||
CUDA_CALLABLE virtual ForceAndEnergy calc_force_and_energy(Vec3<real> r) = 0;
|
||||
};
|
||||
|
||||
/**
|
||||
* Calculate the Lennard-Jones energy and force for the current particle pair
|
||||
* described by displacement vector r
|
||||
*/
|
||||
struct LennardJones : PairPotential {
|
||||
real m_epsilon;
|
||||
real m_sigma;
|
||||
|
||||
CUDA_CALLABLE LennardJones(real sigma, real epsilon, real rcutoff)
|
||||
: PairPotential(rcutoff), m_epsilon(epsilon), m_sigma(sigma) {};
|
||||
|
||||
CUDA_CALLABLE ForceAndEnergy calc_force_and_energy(Vec3<real> r) {
|
||||
real rmagsq = r.squared_norm2();
|
||||
if (rmagsq < this->m_rcutoffsq && rmagsq > 0.0) {
|
||||
real inv_rmag = 1 / std::sqrt(rmagsq);
|
||||
|
||||
// Pre-Compute the terms (doing this saves on multiple devisions/pow
|
||||
// function call)
|
||||
real sigma_r = m_sigma * inv_rmag;
|
||||
real sigma_r6 = sigma_r * sigma_r * sigma_r * sigma_r * sigma_r * sigma_r;
|
||||
real sigma_r12 = sigma_r6 * sigma_r6;
|
||||
|
||||
// Get the energy
|
||||
real energy = 4.0 * m_epsilon * (sigma_r12 - sigma_r6);
|
||||
|
||||
// Get the force vector
|
||||
real force_mag =
|
||||
4.0 * m_epsilon *
|
||||
(12.0 * sigma_r12 * inv_rmag - 6.0 * sigma_r6 * inv_rmag);
|
||||
Vec3<real> force = r.scale(force_mag * inv_rmag);
|
||||
|
||||
return {energy, force};
|
||||
|
||||
} else {
|
||||
return ForceAndEnergy::zero();
|
||||
}
|
||||
};
|
||||
|
||||
CUDA_CALLABLE inline ~LennardJones(){};
|
||||
};
|
||||
|
||||
inline PairPotential::~PairPotential() {};
|
||||
#endif
|
118
kernels/potentials/pair_potentials.cuh
Normal file
118
kernels/potentials/pair_potentials.cuh
Normal file
|
@ -0,0 +1,118 @@
|
|||
#ifndef POTENTIALS_CUH
|
||||
#define POTENTIALS_CUH
|
||||
|
||||
#include "precision.hpp"
|
||||
#include "vec3.h"
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <variant>
|
||||
|
||||
#ifdef __CUDACC__
|
||||
#define CUDA_CALLABLE __host__ __device__
|
||||
#else
|
||||
#define CUDA_CALLABLE
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Result struct for the Pair Potential
|
||||
*/
|
||||
struct ForceAndEnergy {
|
||||
real energy;
|
||||
Vec3<real> force;
|
||||
|
||||
CUDA_CALLABLE inline static ForceAndEnergy zero() {
|
||||
return {0.0, {0.0, 0.0, 0.0}};
|
||||
};
|
||||
};
|
||||
|
||||
/**
|
||||
* Calculate the Lennard-Jones energy and force for the current particle
|
||||
* pair described by displacement vector r
|
||||
*/
|
||||
struct LennardJones {
|
||||
real m_sigma;
|
||||
real m_epsilon;
|
||||
real m_rcutoffsq;
|
||||
|
||||
CUDA_CALLABLE LennardJones(real sigma, real epsilon, real rcutoff) {
|
||||
m_sigma = sigma;
|
||||
m_epsilon = epsilon;
|
||||
m_rcutoffsq = rcutoff * rcutoff;
|
||||
};
|
||||
|
||||
CUDA_CALLABLE ForceAndEnergy calc_force_and_energy(Vec3<real> r) {
|
||||
real rmagsq = r.squared_norm2();
|
||||
if (rmagsq < m_rcutoffsq && rmagsq > 0.0) {
|
||||
real inv_rmag = 1 / sqrt(rmagsq);
|
||||
|
||||
// Pre-Compute the terms (doing this saves on multiple devisions/pow
|
||||
// function call)
|
||||
real sigma_r = m_sigma * inv_rmag;
|
||||
real sigma_r6 = sigma_r * sigma_r * sigma_r * sigma_r * sigma_r * sigma_r;
|
||||
real sigma_r12 = sigma_r6 * sigma_r6;
|
||||
|
||||
// Get the energy
|
||||
real energy = 4.0 * m_epsilon * (sigma_r12 - sigma_r6);
|
||||
|
||||
// Get the force vector
|
||||
real force_mag =
|
||||
4.0 * m_epsilon *
|
||||
(12.0 * sigma_r12 * inv_rmag - 6.0 * sigma_r6 * inv_rmag);
|
||||
Vec3<real> force = r.scale(force_mag * inv_rmag);
|
||||
|
||||
return {energy, force};
|
||||
|
||||
} else {
|
||||
return ForceAndEnergy::zero();
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
/**
|
||||
* Calculate the Morse potential energy and force for the current particle pair
|
||||
* described by displacement vector r
|
||||
*/
|
||||
struct Morse {
|
||||
real m_D; // Depth of the potential well
|
||||
real m_a; // Width of the potential
|
||||
real m_r0; // Equilibrium bond distance
|
||||
real m_rcutoffsq; // Cutoff distance squared
|
||||
|
||||
CUDA_CALLABLE Morse(real D, real a, real r0, real rcutoff) {
|
||||
m_D = D;
|
||||
m_a = a;
|
||||
m_r0 = r0;
|
||||
m_rcutoffsq = rcutoff * rcutoff;
|
||||
};
|
||||
|
||||
CUDA_CALLABLE ForceAndEnergy calc_force_and_energy(Vec3<real> r) {
|
||||
real rmagsq = r.squared_norm2();
|
||||
if (rmagsq < m_rcutoffsq && rmagsq > 0.0) {
|
||||
real rmag = sqrt(rmagsq);
|
||||
real dr = rmag - m_r0;
|
||||
|
||||
// Compute exponentials
|
||||
real exp_a_dr = exp(-m_a * dr);
|
||||
real exp_2a_dr = exp_a_dr * exp_a_dr;
|
||||
|
||||
// Energy: V(r) = D * (exp(-2a(r - r0)) - 2*exp(-a(r - r0)))
|
||||
real energy = m_D * (exp_2a_dr - 2.0 * exp_a_dr);
|
||||
|
||||
// Force magnitude: F(r) = 2aD * (exp(-2a(r - r0)) - exp(-a(r - r0)))
|
||||
real force_mag = 2.0 * m_a * m_D * (exp_2a_dr - exp_a_dr);
|
||||
|
||||
// Direction: normalized vector
|
||||
Vec3<real> force = r.scale(force_mag / rmag);
|
||||
|
||||
return {energy, force};
|
||||
|
||||
} else {
|
||||
return ForceAndEnergy::zero();
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
// Variant type for storing pair potential types
|
||||
using PairPotentials = std::variant<LennardJones, Morse>;
|
||||
|
||||
#endif
|
|
@ -1,4 +1,4 @@
|
|||
#include "pair_potentials.cuh"
|
||||
#include "potentials/pair_potentials.cuh"
|
||||
#include "precision.hpp"
|
||||
#include "gtest/gtest.h"
|
||||
#include <cmath>
|
||||
|
@ -69,6 +69,7 @@ __global__ void lennard_jones_test_kernel(TestResults *results) {
|
|||
auto result = lj.calc_force_and_energy(r);
|
||||
results->energy_values[2] = result.energy;
|
||||
results->force_values[2] = result.force;
|
||||
|
||||
results->at_minimum_pass =
|
||||
(fabs(result.energy + epsilon) < tolerance) &&
|
||||
vec3_near(Vec3<real>{0.0, 0.0, 0.0}, result.force, tolerance);
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
#include "pair_potentials.cuh"
|
||||
#include "potentials/pair_potentials.cuh"
|
||||
#include "precision.hpp"
|
||||
#include "gtest/gtest.h"
|
||||
#include <cmath>
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue