Change default precision to float and use float4 for force and potential calculations
This commit is contained in:
parent
dd83fc6330
commit
130b613a7c
9 changed files with 151 additions and 362 deletions
|
@ -55,33 +55,30 @@ protected:
|
|||
}
|
||||
|
||||
// Helper function to run the force calculation kernel
|
||||
std::pair<std::vector<real>, std::vector<real>>
|
||||
run_force_calculation(int n_particles, const std::vector<real> &positions,
|
||||
std::vector<float4>
|
||||
run_force_calculation(int n_particles, const std::vector<float4> &positions,
|
||||
const std::vector<real> &box_dimensions) {
|
||||
std::vector<real> forces(3 * n_particles, 0.0);
|
||||
std::vector<real> energies(n_particles, 0.0);
|
||||
std::vector<float4> force_energies(n_particles,
|
||||
make_float4(0.0, 0.0, 0.0, 0.0));
|
||||
|
||||
real *d_positions = allocateAndCopyToGPU(positions);
|
||||
real *d_forces = allocateAndCopyToGPU(forces);
|
||||
real *d_energies = allocateAndCopyToGPU(energies);
|
||||
float4 *d_positions = allocateAndCopyToGPU(positions);
|
||||
float4 *d_force_energies = allocateAndCopyToGPU(force_energies);
|
||||
real *d_box_len = allocateAndCopyToGPU(box_dimensions);
|
||||
|
||||
std::vector<PairPotentials> potentials = {LennardJones(1.0, 1.0, 3.0)};
|
||||
CAC::launch_force_kernels(d_positions, d_forces, d_energies, n_particles,
|
||||
CAC::launch_force_kernels(d_positions, d_force_energies, n_particles,
|
||||
d_box_len, potentials, GRID_SIZE, BLOCK_SIZE);
|
||||
|
||||
checkCudaError(cudaGetLastError(), "kernel launch");
|
||||
checkCudaError(cudaDeviceSynchronize(), "kernel execution");
|
||||
|
||||
std::vector<real> result_forces =
|
||||
copyFromGPUAndFree(d_forces, 3 * n_particles);
|
||||
std::vector<real> result_energies =
|
||||
copyFromGPUAndFree(d_energies, n_particles);
|
||||
std::vector<float4> result_force_energies =
|
||||
copyFromGPUAndFree(d_force_energies, n_particles);
|
||||
|
||||
checkCudaError(cudaFree(d_positions), "cudaFree positions");
|
||||
checkCudaError(cudaFree(d_box_len), "cudaFree box_len");
|
||||
|
||||
return {result_forces, result_energies};
|
||||
return result_force_energies;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -90,14 +87,14 @@ TEST_F(CudaForceKernelTest, BasicFunctionalityTest) {
|
|||
const real tolerance = 1e-5;
|
||||
|
||||
// Set up test data - simple 2x2 grid of particles
|
||||
std::vector<real> positions = {
|
||||
0.0, 0.0, 0.0, // particle 0
|
||||
0.5, 0.0, 0.0, // particle 1
|
||||
std::vector<float4> positions = {
|
||||
make_float4(0.0, 0.0, 0.0, 0.0), // particle 0
|
||||
make_float4(0.5, 0.0, 0.0, 0.0), // particle 1
|
||||
};
|
||||
|
||||
std::vector<real> box_dimensions = {10.0, 10.0, 10.0};
|
||||
|
||||
auto [result_forces, result_energies] =
|
||||
auto result_force_energies =
|
||||
run_force_calculation(n_particles, positions, box_dimensions);
|
||||
|
||||
// Verify results - forces should be non-zero and energies should be
|
||||
|
@ -105,17 +102,14 @@ TEST_F(CudaForceKernelTest, BasicFunctionalityTest) {
|
|||
bool has_nonzero_force = false;
|
||||
bool has_nonzero_energy = false;
|
||||
|
||||
for (int i = 0; i < 3 * n_particles; i++) {
|
||||
if (std::abs(result_forces[i]) > tolerance) {
|
||||
has_nonzero_force = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_particles; i++) {
|
||||
if (std::abs(result_energies[i]) > tolerance) {
|
||||
if (std::abs(result_force_energies[i].x) > tolerance ||
|
||||
std::abs(result_force_energies[i].y) > tolerance ||
|
||||
std::abs(result_force_energies[i].z) > tolerance) {
|
||||
has_nonzero_force = true;
|
||||
}
|
||||
if (std::abs(result_force_energies[i].w) > tolerance) {
|
||||
has_nonzero_energy = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -130,60 +124,61 @@ TEST_F(CudaForceKernelTest, PeriodicBoundaryConditionsTest) {
|
|||
const real tolerance = 1e-5;
|
||||
|
||||
// Place particles near opposite edges of a small box
|
||||
std::vector<real> positions = {
|
||||
0.1, 0.0, 0.0, // particle 0 near left edge
|
||||
4.9, 0.0, 0.0 // particle 1 near right edge
|
||||
std::vector<float4> positions = {
|
||||
make_float4(0.1, 0.0, 0.0, 0.0), // particle 0 near left edge
|
||||
make_float4(4.9, 0.0, 0.0, 0.0) // particle 1 near right edge
|
||||
};
|
||||
std::vector<real> box_dimensions = {5.0, 5.0, 5.0}; // Small box to test PBC
|
||||
|
||||
auto [result_forces, result_energies] =
|
||||
auto result_force_energies =
|
||||
run_force_calculation(n_particles, positions, box_dimensions);
|
||||
|
||||
// With PBC, particles should interact as if they're close (distance ~0.2)
|
||||
// rather than far apart (distance ~4.8)
|
||||
EXPECT_GT(std::abs(result_forces[0]), tolerance)
|
||||
EXPECT_GT(std::abs(result_force_energies[0].x), tolerance)
|
||||
<< "Expected significant force due to PBC";
|
||||
EXPECT_GT(std::abs(result_energies[0]), tolerance)
|
||||
<< "Expected significant energy due to PBC";
|
||||
}
|
||||
|
||||
TEST_F(CudaForceKernelTest, SingleParticleTest) {
|
||||
const int n_particles = 1;
|
||||
|
||||
std::vector<real> positions = {0.0, 0.0, 0.0};
|
||||
std::vector<float4> positions = {make_float4(0.0, 0.0, 0.0, 0.0)};
|
||||
std::vector<real> box_dimensions = {10.0, 10.0, 10.0};
|
||||
|
||||
auto [result_forces, result_energies] =
|
||||
auto result_force_energies =
|
||||
run_force_calculation(n_particles, positions, box_dimensions);
|
||||
// Single particle should have zero force and energy
|
||||
EXPECT_NEAR(result_forces[0], 0.0, 1e-10);
|
||||
EXPECT_NEAR(result_forces[1], 0.0, 1e-10);
|
||||
EXPECT_NEAR(result_forces[2], 0.0, 1e-10);
|
||||
EXPECT_NEAR(result_energies[0], 0.0, 1e-10);
|
||||
EXPECT_NEAR(result_force_energies[0].x, 0.0, 1e-10);
|
||||
EXPECT_NEAR(result_force_energies[0].y, 0.0, 1e-10);
|
||||
EXPECT_NEAR(result_force_energies[0].z, 0.0, 1e-10);
|
||||
EXPECT_NEAR(result_force_energies[0].w, 0.0, 1e-10);
|
||||
}
|
||||
|
||||
TEST_F(CudaForceKernelTest, ForceSymmetryTest) {
|
||||
const int n_particles = 2;
|
||||
const real tolerance = 1e-5;
|
||||
|
||||
std::vector<real> positions = {
|
||||
0.0, 0.0, 0.0, // particle 0
|
||||
1.5, 0.0, 0.0 // particle 1
|
||||
std::vector<float4> positions = {
|
||||
make_float4(0.0, 0.0, 0.0, 0.0), // particle 0
|
||||
make_float4(1.5, 0.0, 0.0, 0.0) // particle 1
|
||||
};
|
||||
std::vector<real> box_dimensions = {10.0, 10.0, 10.0};
|
||||
|
||||
auto [result_forces, result_energies] =
|
||||
auto result_force_energies =
|
||||
run_force_calculation(n_particles, positions, box_dimensions);
|
||||
|
||||
// Newton's third law: forces should be equal and opposite
|
||||
EXPECT_NEAR(result_forces[0], -result_forces[3], tolerance)
|
||||
EXPECT_NEAR(result_force_energies[0].x, -result_force_energies[1].x,
|
||||
tolerance)
|
||||
<< "Force x-components should be opposite";
|
||||
EXPECT_NEAR(result_forces[1], -result_forces[4], tolerance)
|
||||
EXPECT_NEAR(result_force_energies[0].y, -result_force_energies[1].y,
|
||||
tolerance)
|
||||
<< "Force y-components should be opposite";
|
||||
EXPECT_NEAR(result_forces[2], -result_forces[5], tolerance)
|
||||
EXPECT_NEAR(result_force_energies[0].z, -result_force_energies[1].z,
|
||||
tolerance)
|
||||
<< "Force z-components should be opposite";
|
||||
|
||||
// Energies should be equal for symmetric particles
|
||||
EXPECT_NEAR(result_energies[0], result_energies[1], tolerance)
|
||||
EXPECT_NEAR(result_force_energies[0].w, result_force_energies[1].w, tolerance)
|
||||
<< "Energies should be equal";
|
||||
}
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
#include "precision.hpp"
|
||||
#include "gtest/gtest.h"
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
// Structure to hold test results from device
|
||||
|
@ -18,8 +19,7 @@ struct TestResults {
|
|||
bool near_cutoff_pass;
|
||||
|
||||
// Additional result data for exact checks
|
||||
real energy_values[10];
|
||||
Vec3<real> force_values[10];
|
||||
float4 force_energy_values[10];
|
||||
};
|
||||
|
||||
// Check if two Vec3 values are close within tolerance
|
||||
|
@ -35,7 +35,7 @@ __global__ void lennard_jones_test_kernel(TestResults *results) {
|
|||
real sigma = 1.0;
|
||||
real epsilon = 1.0;
|
||||
real r_cutoff = 2.5;
|
||||
real tolerance = 1e-10;
|
||||
real tolerance = 1e-5;
|
||||
|
||||
// Create LennardJones object on device
|
||||
LennardJones lj(sigma, epsilon, r_cutoff);
|
||||
|
@ -43,87 +43,78 @@ __global__ void lennard_jones_test_kernel(TestResults *results) {
|
|||
// Zero Distance Test
|
||||
{
|
||||
Vec3<real> r = {0.0, 0.0, 0.0};
|
||||
auto result = lj.calc_force_and_energy(r);
|
||||
results->energy_values[0] = result.energy;
|
||||
results->force_values[0] = result.force;
|
||||
float4 result = lj.calc_force_and_energy(r);
|
||||
results->force_energy_values[0] = result;
|
||||
results->zero_distance_pass =
|
||||
(result.energy == 0.0) &&
|
||||
vec3_near(Vec3<real>{0.0, 0.0, 0.0}, result.force, tolerance);
|
||||
(result.w == 0.0) &&
|
||||
vec3_near(Vec3<real>{0.0, 0.0, 0.0},
|
||||
Vec3<real>{result.x, result.y, result.z}, tolerance);
|
||||
}
|
||||
|
||||
// Beyond Cutoff Test
|
||||
{
|
||||
Vec3<real> r = {3.0, 0.0, 0.0};
|
||||
auto result = lj.calc_force_and_energy(r);
|
||||
results->energy_values[1] = result.energy;
|
||||
results->force_values[1] = result.force;
|
||||
float4 result = lj.calc_force_and_energy(r);
|
||||
results->force_energy_values[1] = result;
|
||||
results->beyond_cutoff_pass =
|
||||
(result.energy == 0.0) &&
|
||||
vec3_near(Vec3<real>{0.0, 0.0, 0.0}, result.force, tolerance);
|
||||
(result.w == 0.0) &&
|
||||
vec3_near(Vec3<real>{0.0, 0.0, 0.0},
|
||||
Vec3<real>{result.x, result.y, result.z}, tolerance);
|
||||
}
|
||||
|
||||
// At Minimum Test
|
||||
{
|
||||
real min_dist = pow(2.0, 1.0 / 6.0) * sigma;
|
||||
Vec3<real> r = {min_dist, 0.0, 0.0};
|
||||
auto result = lj.calc_force_and_energy(r);
|
||||
results->energy_values[2] = result.energy;
|
||||
results->force_values[2] = result.force;
|
||||
float4 result = lj.calc_force_and_energy(r);
|
||||
results->force_energy_values[2] = result;
|
||||
|
||||
results->at_minimum_pass =
|
||||
(fabs(result.energy + epsilon) < tolerance) &&
|
||||
vec3_near(Vec3<real>{0.0, 0.0, 0.0}, result.force, tolerance);
|
||||
(fabs(result.w + epsilon) < tolerance) &&
|
||||
vec3_near(Vec3<real>{0.0, 0.0, 0.0},
|
||||
Vec3<real>{result.x, result.y, result.z}, tolerance);
|
||||
}
|
||||
|
||||
// At Equilibrium Test
|
||||
{
|
||||
Vec3<real> r = {sigma, 0.0, 0.0};
|
||||
auto result = lj.calc_force_and_energy(r);
|
||||
results->energy_values[3] = result.energy;
|
||||
results->force_values[3] = result.force;
|
||||
results->at_equilibrium_pass = (fabs(result.energy) < tolerance) &&
|
||||
(result.force.x > 0.0) &&
|
||||
(fabs(result.force.y) < tolerance) &&
|
||||
(fabs(result.force.z) < tolerance);
|
||||
float4 result = lj.calc_force_and_energy(r);
|
||||
results->force_energy_values[3] = result;
|
||||
results->at_equilibrium_pass =
|
||||
(fabs(result.w) < tolerance) && (result.x > 0.0) &&
|
||||
(fabs(result.y) < tolerance) && (fabs(result.z) < tolerance);
|
||||
}
|
||||
|
||||
// Repulsive Region Test
|
||||
{
|
||||
Vec3<real> r = {0.8 * sigma, 0.0, 0.0};
|
||||
auto result = lj.calc_force_and_energy(r);
|
||||
results->energy_values[4] = result.energy;
|
||||
results->force_values[4] = result.force;
|
||||
results->repulsive_region_pass =
|
||||
(result.energy > 0.0) && (result.force.x > 0.0);
|
||||
Vec3<real> r = {0.8f * sigma, 0.0, 0.0};
|
||||
float4 result = lj.calc_force_and_energy(r);
|
||||
results->force_energy_values[4] = result;
|
||||
results->repulsive_region_pass = (result.w > 0.0) && (result.x > 0.0);
|
||||
}
|
||||
|
||||
// Attractive Region Test
|
||||
{
|
||||
Vec3<real> r = {1.5 * sigma, 0.0, 0.0};
|
||||
auto result = lj.calc_force_and_energy(r);
|
||||
results->energy_values[5] = result.energy;
|
||||
results->force_values[5] = result.force;
|
||||
results->attractive_region_pass =
|
||||
(result.energy < 0.0) && (result.force.x < 0.0);
|
||||
Vec3<real> r = {1.5f * sigma, 0.0, 0.0};
|
||||
float4 result = lj.calc_force_and_energy(r);
|
||||
results->force_energy_values[5] = result;
|
||||
results->attractive_region_pass = (result.w < 0.0) && (result.x < 0.0);
|
||||
}
|
||||
|
||||
// Arbitrary Direction Test
|
||||
{
|
||||
Vec3<real> r = {1.0, 1.0, 1.0};
|
||||
auto result = lj.calc_force_and_energy(r);
|
||||
results->energy_values[6] = result.energy;
|
||||
results->force_values[6] = result.force;
|
||||
float4 result = lj.calc_force_and_energy(r);
|
||||
results->force_energy_values[6] = result;
|
||||
|
||||
real r_mag = sqrt(r.squared_norm2());
|
||||
Vec3<real> normalized_r = r.scale(1.0 / r_mag);
|
||||
real force_dot_r = result.force.x * normalized_r.x +
|
||||
result.force.y * normalized_r.y +
|
||||
result.force.z * normalized_r.z;
|
||||
real force_dot_r = result.x * normalized_r.x + result.y * normalized_r.y +
|
||||
result.z * normalized_r.z;
|
||||
|
||||
results->arbitrary_direction_pass =
|
||||
(force_dot_r < 0.0) &&
|
||||
(fabs(result.force.x - result.force.y) < tolerance) &&
|
||||
(fabs(result.force.y - result.force.z) < tolerance);
|
||||
(force_dot_r < 0.0) && (fabs(result.x - result.y) < tolerance) &&
|
||||
(fabs(result.y - result.z) < tolerance);
|
||||
}
|
||||
|
||||
// Parameter Variation Test
|
||||
|
@ -135,34 +126,31 @@ __global__ void lennard_jones_test_kernel(TestResults *results) {
|
|||
LennardJones lj2(new_sigma, new_epsilon, new_r_cutoff);
|
||||
|
||||
Vec3<real> r = {2.0, 0.0, 0.0};
|
||||
auto result1 = lj.calc_force_and_energy(r);
|
||||
auto result2 = lj2.calc_force_and_energy(r);
|
||||
float4 result1 = lj.calc_force_and_energy(r);
|
||||
float4 result2 = lj2.calc_force_and_energy(r);
|
||||
|
||||
results->energy_values[7] = result2.energy;
|
||||
results->force_values[7] = result2.force;
|
||||
results->force_energy_values[7] = result2;
|
||||
|
||||
results->parameter_variation_pass = (result1.energy != result2.energy) &&
|
||||
(result1.force.x != result2.force.x);
|
||||
results->parameter_variation_pass =
|
||||
(result1.w != result2.w) && (result1.x != result2.x);
|
||||
}
|
||||
|
||||
// Exact Value Check Test
|
||||
{
|
||||
LennardJones lj_exact(1.0, 1.0, 3.0);
|
||||
Vec3<real> r = {1.5, 0.0, 0.0};
|
||||
auto result = lj_exact.calc_force_and_energy(r);
|
||||
float4 result = lj_exact.calc_force_and_energy(r);
|
||||
|
||||
results->energy_values[8] = result.energy;
|
||||
results->force_values[8] = result.force;
|
||||
results->force_energy_values[8] = result;
|
||||
|
||||
real expected_energy = 4.0 * (pow(1.0 / 1.5, 12) - pow(1.0 / 1.5, 6));
|
||||
real expected_force =
|
||||
24.0 * (pow(1.0 / 1.5, 6) - 2.0 * pow(1.0 / 1.5, 12)) / 1.5;
|
||||
|
||||
results->exact_value_check_pass =
|
||||
(fabs(result.energy - expected_energy) < tolerance) &&
|
||||
(fabs(result.force.x + expected_force) < tolerance) &&
|
||||
(fabs(result.force.y) < tolerance) &&
|
||||
(fabs(result.force.z) < tolerance);
|
||||
(fabs(result.w - expected_energy) < tolerance) &&
|
||||
(fabs(result.x + expected_force) < tolerance) &&
|
||||
(fabs(result.y) < tolerance) && (fabs(result.z) < tolerance);
|
||||
}
|
||||
|
||||
// Near Cutoff Test
|
||||
|
@ -173,16 +161,18 @@ __global__ void lennard_jones_test_kernel(TestResults *results) {
|
|||
Vec3<real> r_inside = {inside_cutoff, 0.0, 0.0};
|
||||
Vec3<real> r_outside = {outside_cutoff, 0.0, 0.0};
|
||||
|
||||
auto result_inside = lj.calc_force_and_energy(r_inside);
|
||||
auto result_outside = lj.calc_force_and_energy(r_outside);
|
||||
float4 result_inside = lj.calc_force_and_energy(r_inside);
|
||||
float4 result_outside = lj.calc_force_and_energy(r_outside);
|
||||
|
||||
results->energy_values[9] = result_inside.energy;
|
||||
results->force_values[9] = result_inside.force;
|
||||
results->force_energy_values[9] = result_inside;
|
||||
|
||||
results->near_cutoff_pass =
|
||||
(result_inside.energy != 0.0) && (result_inside.force.x != 0.0) &&
|
||||
(result_outside.energy == 0.0) &&
|
||||
vec3_near(Vec3<real>{0.0, 0.0, 0.0}, result_outside.force, tolerance);
|
||||
(result_inside.w != 0.0) && (result_inside.x != 0.0) &&
|
||||
(result_outside.w == 0.0) &&
|
||||
vec3_near(
|
||||
Vec3<real>{0.0, 0.0, 0.0},
|
||||
Vec3<real>{result_outside.x, result_outside.y, result_outside.z},
|
||||
tolerance);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -250,44 +240,48 @@ TEST_F(LennardJonesCudaTest, DeviceZeroDistance) {
|
|||
auto results = runDeviceTests();
|
||||
EXPECT_TRUE(results.zero_distance_pass)
|
||||
<< "Zero distance test failed on device. Energy: "
|
||||
<< results.energy_values[0] << ", Force: (" << results.force_values[0].x
|
||||
<< ", " << results.force_values[0].y << ", " << results.force_values[0].z
|
||||
<< ")";
|
||||
<< results.force_energy_values[0].w << ", Force: ("
|
||||
<< results.force_energy_values[0].x << ", "
|
||||
<< results.force_energy_values[0].y << ", "
|
||||
<< results.force_energy_values[0].z << ")";
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesCudaTest, DeviceBeyondCutoff) {
|
||||
auto results = runDeviceTests();
|
||||
EXPECT_TRUE(results.beyond_cutoff_pass)
|
||||
<< "Beyond cutoff test failed on device. Energy: "
|
||||
<< results.energy_values[1];
|
||||
<< results.force_energy_values[1].w;
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesCudaTest, DeviceAtMinimum) {
|
||||
auto results = runDeviceTests();
|
||||
EXPECT_TRUE(results.at_minimum_pass)
|
||||
<< "At minimum test failed on device. Energy: "
|
||||
<< results.energy_values[2];
|
||||
<< results.force_energy_values[2].w;
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesCudaTest, DeviceAtEquilibrium) {
|
||||
auto results = runDeviceTests();
|
||||
EXPECT_TRUE(results.at_equilibrium_pass)
|
||||
<< "At equilibrium test failed on device. Energy: "
|
||||
<< results.energy_values[3] << ", Force x: " << results.force_values[3].x;
|
||||
<< results.force_energy_values[3].w
|
||||
<< ", Force x: " << results.force_energy_values[3].x;
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesCudaTest, DeviceRepulsiveRegion) {
|
||||
auto results = runDeviceTests();
|
||||
EXPECT_TRUE(results.repulsive_region_pass)
|
||||
<< "Repulsive region test failed on device. Energy: "
|
||||
<< results.energy_values[4] << ", Force x: " << results.force_values[4].x;
|
||||
<< results.force_energy_values[4].w
|
||||
<< ", Force x: " << results.force_energy_values[4].x;
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesCudaTest, DeviceAttractiveRegion) {
|
||||
auto results = runDeviceTests();
|
||||
EXPECT_TRUE(results.attractive_region_pass)
|
||||
<< "Attractive region test failed on device. Energy: "
|
||||
<< results.energy_values[5] << ", Force x: " << results.force_values[5].x;
|
||||
<< results.force_energy_values[5].w
|
||||
<< ", Force x: " << results.force_energy_values[5].x;
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesCudaTest, DeviceArbitraryDirection) {
|
||||
|
@ -306,12 +300,13 @@ TEST_F(LennardJonesCudaTest, DeviceExactValueCheck) {
|
|||
auto results = runDeviceTests();
|
||||
EXPECT_TRUE(results.exact_value_check_pass)
|
||||
<< "Exact value check test failed on device. Energy: "
|
||||
<< results.energy_values[8] << ", Force x: " << results.force_values[8].x;
|
||||
<< results.force_energy_values[8].w
|
||||
<< ", Force x: " << results.force_energy_values[8].x;
|
||||
}
|
||||
|
||||
TEST_F(LennardJonesCudaTest, DeviceNearCutoff) {
|
||||
auto results = runDeviceTests();
|
||||
EXPECT_TRUE(results.near_cutoff_pass)
|
||||
<< "Near cutoff test failed on device. Inside energy: "
|
||||
<< results.energy_values[9];
|
||||
<< results.force_energy_values[9].w;
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue