#include #include #include #include // Include your header files #include "forces.cuh" #include "pair_potentials.cuh" #include "precision.hpp" class CudaForceKernelTest : public ::testing::Test { protected: const int BLOCK_SIZE = 1; const int THREADS_PER_BLOCK = 4; void SetUp() override { // Set up CUDA device cudaError_t err = cudaSetDevice(0); ASSERT_EQ(err, cudaSuccess) << "Failed to set CUDA device"; } void TearDown() override { // Clean up any remaining GPU memory cudaDeviceReset(); } // Helper function to check CUDA errors void checkCudaError(cudaError_t err, const std::string &operation) { ASSERT_EQ(err, cudaSuccess) << "CUDA error in " << operation << ": " << cudaGetErrorString(err); } // Helper function to allocate and copy data to GPU template T *allocateAndCopyToGPU(const std::vector &host_data) { T *device_ptr; size_t size = host_data.size() * sizeof(T); checkCudaError(cudaMalloc(&device_ptr, size), "cudaMalloc"); checkCudaError( cudaMemcpy(device_ptr, host_data.data(), size, cudaMemcpyHostToDevice), "cudaMemcpy H2D"); return device_ptr; } // Helper function to copy data from GPU and free GPU memory template std::vector copyFromGPUAndFree(T *device_ptr, size_t count) { std::vector host_data(count); size_t size = count * sizeof(T); checkCudaError( cudaMemcpy(host_data.data(), device_ptr, size, cudaMemcpyDeviceToHost), "cudaMemcpy D2H"); checkCudaError(cudaFree(device_ptr), "cudaFree"); return host_data; } // Helper function to run the force calculation kernel std::pair, std::vector> run_force_calculation(int n_particles, const std::vector &positions, const std::vector &box_dimensions) { std::vector forces(3 * n_particles, 0.0); std::vector energies(n_particles, 0.0); real *d_positions = allocateAndCopyToGPU(positions); real *d_forces = allocateAndCopyToGPU(forces); real *d_energies = allocateAndCopyToGPU(energies); real *d_box_len = allocateAndCopyToGPU(box_dimensions); // Allocate potential on the GPU LennardJones h_potential(1.0, 1.0, 3.0); LennardJones *d_potential; checkCudaError(cudaMalloc(&d_potential, sizeof(LennardJones)), "cudaMalloc potential"); checkCudaError(cudaMemcpy(d_potential, &h_potential, sizeof(LennardJones), cudaMemcpyHostToDevice), "cudaMemcpy H2D potential"); CAC::calc_forces_and_energies<<>>( d_positions, d_forces, d_energies, n_particles, d_box_len, d_potential); checkCudaError(cudaGetLastError(), "kernel launch"); checkCudaError(cudaDeviceSynchronize(), "kernel execution"); std::vector result_forces = copyFromGPUAndFree(d_forces, 3 * n_particles); std::vector result_energies = copyFromGPUAndFree(d_energies, n_particles); checkCudaError(cudaFree(d_positions), "cudaFree positions"); checkCudaError(cudaFree(d_box_len), "cudaFree box_len"); checkCudaError(cudaFree(d_potential), "cudaFree potential"); return {result_forces, result_energies}; } }; TEST_F(CudaForceKernelTest, BasicFunctionalityTest) { const int n_particles = 2; const real tolerance = 1e-5; // Set up test data - simple 2x2 grid of particles std::vector positions = { 0.0, 0.0, 0.0, // particle 0 1.0, 0.0, 0.0, // particle 1 }; std::vector box_dimensions = {10.0, 10.0, 10.0}; auto [result_forces, result_energies] = run_force_calculation(n_particles, positions, box_dimensions); // Verify results - forces should be non-zero and energies should be // calculated bool has_nonzero_force = false; bool has_nonzero_energy = false; for (int i = 0; i < 3 * n_particles; i++) { if (std::abs(result_forces[i]) > tolerance) { has_nonzero_force = true; break; } } for (int i = 0; i < n_particles; i++) { if (std::abs(result_energies[i]) > tolerance) { has_nonzero_energy = true; break; } } EXPECT_TRUE(has_nonzero_force) << "Expected non-zero forces between particles"; EXPECT_TRUE(has_nonzero_energy) << "Expected non-zero energies for particles "; } // // TEST_F(CudaKernelTest, PeriodicBoundaryConditionsTest) { // const int n_particles = 2; // const real tolerance = 1e-5; // // // Place particles near opposite edges of a small box // std::vector positions = { // 0.1, 0.0, 0.0, // particle 0 near left edge // 4.9, 0.0, 0.0 // particle 1 near right edge // }; // std::vector box_dimensions = {5.0, 5.0, 5.0}; // Small box to test // PBC // // auto [result_forces, result_energies] = // run_force_calculation(n_particles, &positions, &box_dimensions); // // // With PBC, particles should interact as if they're close (distance ~0.2) // // rather than far apart (distance ~4.8) // EXPECT_GT(std::abs(result_forces[0]), tolerance) // << "Expected significant force due to PBC"; // EXPECT_GT(std::abs(result_energies[0]), tolerance) // << "Expected significant energy due to PBC"; // } // TEST_F(CudaForceKernelTest, SingleParticleTest) { // const int n_particles = 1; // // std::vector positions = {0.0, 0.0, 0.0}; // std::vector box_dimensions = {10.0, 10.0, 10.0}; // // auto [result_forces, result_energies] = // run_force_calculation(n_particles, positions, box_dimensions); // // Single particle should have zero force and energy // EXPECT_NEAR(result_forces[0], 0.0, 1e-10); // EXPECT_NEAR(result_forces[1], 0.0, 1e-10); // EXPECT_NEAR(result_forces[2], 0.0, 1e-10); // EXPECT_NEAR(result_energies[0], 0.0, 1e-10); // } // TEST_F(CudaKernelTest, ForceSymmetryTest) { // const int n_particles = 2; // const real tolerance = 1e-5; // // std::vector positions = { // 0.0, 0.0, 0.0, // particle 0 // 1.5, 0.0, 0.0 // particle 1 // }; // std::vector box_dimensions = {10.0, 10.0, 10.0}; // // auto [result_forces, result_energies] = // run_force_calculation(n_particles, &positions, &box_dimensions); // // // Newton's third law: forces should be equal and opposite // EXPECT_NEAR(result_forces[0], -result_forces[3], tolerance) // << "Force x-components should be opposite"; // EXPECT_NEAR(result_forces[1], -result_forces[4], tolerance) // << "Force y-components should be opposite"; // EXPECT_NEAR(result_forces[2], -result_forces[5], tolerance) // << "Force z-components should be opposite"; // // // Energies should be equal for symmetric particles // EXPECT_NEAR(result_energies[0], result_energies[1], tolerance) // << "Energies should be equal"; // }