Compare commits
No commits in common. "f8044a043bce8cb993cdca5b2a59f692fa1d1658" and "0bff803b91f6addd9a866e9acd64938a9d3fcc39" have entirely different histories.
f8044a043b
...
0bff803b91
9 changed files with 124 additions and 120 deletions
|
@ -3,10 +3,15 @@ import sys
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import List, Optional
|
from typing import List, Optional
|
||||||
|
|
||||||
from reviewllama.reviewllama import run_reviewllama
|
from reviewllama.git_diff import analyze_git_repository
|
||||||
|
|
||||||
from .configs import ReviewConfig, namespace_to_config
|
from .configs import ReviewConfig, create_config_from_vars
|
||||||
from .logger import log_paths, log_review_start
|
from .logger import (
|
||||||
|
log_git_analysis_result,
|
||||||
|
log_git_analysis_start,
|
||||||
|
log_paths,
|
||||||
|
log_review_start,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def normalize_server_url(url: str) -> str:
|
def normalize_server_url(url: str) -> str:
|
||||||
|
@ -25,7 +30,7 @@ def create_argument_parser() -> argparse.ArgumentParser:
|
||||||
epilog="""
|
epilog="""
|
||||||
Examples:
|
Examples:
|
||||||
reviewllama . --model gemma3:27b --server localhost:11434
|
reviewllama . --model gemma3:27b --server localhost:11434
|
||||||
reviewllama src/ tests/ --model gemma3:4b
|
reviewllama src/ tests/ --model llama3.2:7b
|
||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -38,7 +43,7 @@ Examples:
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--model",
|
"--model",
|
||||||
default="gemma3:4b",
|
default="llama3.2:3b",
|
||||||
help="Ollama model to use for code review (default: %(default)s)",
|
help="Ollama model to use for code review (default: %(default)s)",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -56,26 +61,6 @@ Examples:
|
||||||
help="Base branch to compare against (default: %(default)s)",
|
help="Base branch to compare against (default: %(default)s)",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--embedding_model",
|
|
||||||
dest="embedding_model",
|
|
||||||
default="nomic-embed-text",
|
|
||||||
help="Base branch to compare against (default: %(default)s)",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--system_prompt",
|
|
||||||
dest="system_prompt",
|
|
||||||
default=(
|
|
||||||
"You are a PR review assistant in charge of softare quality control. "
|
|
||||||
"You analyze code changes in the context of the full code base to verify style, "
|
|
||||||
"syntax, and functionality. Each suggestion should consist of the original code, "
|
|
||||||
"suggested changes if relevant, and a short description of why the change is suggested "
|
|
||||||
"Examples\nInput:\n```\nvarialbe=1+1\n```\nOutput:\nOriginal:\n```\nvarialbe=1+1\n"
|
|
||||||
"Suggestion:\n```variable=1+1\n```\nReason: `varialbe` is likely a typo."
|
|
||||||
),
|
|
||||||
help="Base branch to compare against (default: %(default)s)",
|
|
||||||
)
|
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
@ -85,20 +70,39 @@ def parse_raw_arguments(args: Optional[List[str]] = None) -> argparse.Namespace:
|
||||||
return parser.parse_args(args)
|
return parser.parse_args(args)
|
||||||
|
|
||||||
|
|
||||||
|
def transform_namespace_to_config(namespace: argparse.Namespace) -> ReviewConfig:
|
||||||
|
"""Transform argparse namespace into ReviewConfig."""
|
||||||
|
paths = [Path(path_str) for path_str in namespace.paths]
|
||||||
|
|
||||||
|
return create_config_from_vars(
|
||||||
|
paths=paths,
|
||||||
|
model=namespace.model,
|
||||||
|
server_url=normalize_server_url(namespace.server_url),
|
||||||
|
# TODO: Update this system prompt. Either allow the user to provide it or engineer our own for this.
|
||||||
|
system_prompt="You are a helpful AI assistant",
|
||||||
|
base_branch=namespace.base_branch,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def parse_arguments(args: Optional[List[str]] = None) -> ReviewConfig:
|
def parse_arguments(args: Optional[List[str]] = None) -> ReviewConfig:
|
||||||
"""Parse command line arguments and return validated configuration."""
|
"""Parse command line arguments and return validated configuration."""
|
||||||
raw_namespace = parse_raw_arguments(args)
|
raw_namespace = parse_raw_arguments(args)
|
||||||
return namespace_to_config(raw_namespace)
|
return transform_namespace_to_config(raw_namespace)
|
||||||
|
|
||||||
|
|
||||||
def cli() -> None:
|
def cli() -> None:
|
||||||
"""Main entry point for the CLI."""
|
"""Main entry point for the CLI."""
|
||||||
try:
|
try:
|
||||||
config = parse_arguments()
|
config = parse_arguments()
|
||||||
|
# TODO: Pass config to review engine
|
||||||
log_review_start(config)
|
log_review_start(config)
|
||||||
log_paths(config.paths)
|
log_paths(config.paths)
|
||||||
|
|
||||||
run_reviewllama(config)
|
for path in config.paths:
|
||||||
|
analysis = analyze_git_repository(path, config.base_branch)
|
||||||
|
log_git_analysis_start(path, config.base_branch)
|
||||||
|
log_git_analysis_result(analysis)
|
||||||
|
print(analysis.diffs)
|
||||||
|
|
||||||
except SystemExit:
|
except SystemExit:
|
||||||
# argparse calls sys.exit on error, let it propagate
|
# argparse calls sys.exit on error, let it propagate
|
||||||
|
|
|
@ -1,4 +1,3 @@
|
||||||
import argparse
|
|
||||||
from dataclasses import dataclass, field
|
from dataclasses import dataclass, field
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import List
|
from typing import List
|
||||||
|
@ -49,13 +48,15 @@ def create_review_config(
|
||||||
return ReviewConfig(paths=paths, ollama=ollama_config, base_branch=base_branch)
|
return ReviewConfig(paths=paths, ollama=ollama_config, base_branch=base_branch)
|
||||||
|
|
||||||
|
|
||||||
def namespace_to_config(
|
def create_config_from_vars(
|
||||||
namespace: argparse.Namespace
|
paths: List[Path],
|
||||||
|
model: str,
|
||||||
|
server_url: str,
|
||||||
|
system_prompt: str,
|
||||||
|
base_branch: str,
|
||||||
):
|
):
|
||||||
"""Transform argparse namespace into ReviewConfig."""
|
|
||||||
paths = [Path(path_str) for path_str in namespace.paths]
|
|
||||||
ollama_config = OllamaConfig(
|
ollama_config = OllamaConfig(
|
||||||
chat_model=namespace.model, base_url=namespace.server_url, system_prompt=namespace.system_prompt, embedding_model=namespace.embedding_model
|
chat_model=model, base_url=server_url, system_prompt=system_prompt
|
||||||
)
|
)
|
||||||
|
|
||||||
return create_review_config(paths, ollama_config, namespace.base_branch)
|
return create_review_config(paths, ollama_config, base_branch)
|
||||||
|
|
|
@ -62,9 +62,9 @@ def branch_exists(repo: Repo, branch_name: str) -> bool:
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
|
||||||
def get_tracked_files(repo: Repo) -> list[Path]:
|
def get_tracked_files(repo: Repo):
|
||||||
return [
|
return [
|
||||||
Path(entry.abspath)
|
entry.abspath
|
||||||
for entry in repo.commit().tree.traverse()
|
for entry in repo.commit().tree.traverse()
|
||||||
if Path(entry.abspath).is_file()
|
if Path(entry.abspath).is_file()
|
||||||
]
|
]
|
||||||
|
|
|
@ -1,4 +1,5 @@
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
|
from pathlib import Path
|
||||||
from typing import Any
|
from typing import Any
|
||||||
|
|
||||||
from langchain.memory import ConversationBufferMemory
|
from langchain.memory import ConversationBufferMemory
|
||||||
|
|
|
@ -38,10 +38,6 @@ def log_paths(paths: List[Path]) -> None:
|
||||||
console.print(f" • {path}")
|
console.print(f" • {path}")
|
||||||
console.print()
|
console.print()
|
||||||
|
|
||||||
def log_info(info: str) -> None:
|
|
||||||
"""Log error message with colored output."""
|
|
||||||
console = create_console()
|
|
||||||
console.print(f"{info}")
|
|
||||||
|
|
||||||
def log_error(error: str) -> None:
|
def log_error(error: str) -> None:
|
||||||
"""Log error message with colored output."""
|
"""Log error message with colored output."""
|
||||||
|
|
|
@ -1,63 +0,0 @@
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
from git import Repo
|
|
||||||
from langchain_core.vectorstores import VectorStoreRetriever
|
|
||||||
|
|
||||||
from reviewllama.configs import OllamaConfig, ReviewConfig
|
|
||||||
from reviewllama.git_diff import (GitAnalysis, GitDiff, analyze_git_repository,
|
|
||||||
get_tracked_files)
|
|
||||||
from reviewllama.llm import ChatClient, chat_with_client, create_chat_client
|
|
||||||
from reviewllama.vector_store import create_retriever
|
|
||||||
|
|
||||||
from .logger import log_git_analysis_result, log_git_analysis_start, log_info
|
|
||||||
|
|
||||||
|
|
||||||
def run_reviewllama(config: ReviewConfig):
|
|
||||||
for path in config.paths:
|
|
||||||
chat_client = create_and_log_chat_client(config.ollama)
|
|
||||||
analysis = create_and_log_git_diff_analysis(path, config.base_branch)
|
|
||||||
retriever = create_and_log_vector_store_retriever(analysis.repo, config.ollama)
|
|
||||||
|
|
||||||
for diff in analysis.diffs:
|
|
||||||
chat_client = get_suggestions(diff, retriever, chat_client)
|
|
||||||
|
|
||||||
|
|
||||||
def create_and_log_chat_client(config: OllamaConfig) -> ChatClient:
|
|
||||||
log_info("Initializing LLM chat client")
|
|
||||||
return create_chat_client(config)
|
|
||||||
|
|
||||||
|
|
||||||
def create_and_log_git_diff_analysis(path: Path, base_branch: str) -> GitAnalysis:
|
|
||||||
log_git_analysis_start(path, base_branch)
|
|
||||||
analysis = analyze_git_repository(path, base_branch)
|
|
||||||
log_git_analysis_result(analysis)
|
|
||||||
return analysis
|
|
||||||
|
|
||||||
|
|
||||||
def create_and_log_vector_store_retriever(
|
|
||||||
repo: Repo, config: OllamaConfig
|
|
||||||
) -> VectorStoreRetriever:
|
|
||||||
log_info("Creating vector_store...")
|
|
||||||
retriever = create_retriever(get_tracked_files(repo), config)
|
|
||||||
log_info("Done creating vector store")
|
|
||||||
return retriever
|
|
||||||
|
|
||||||
|
|
||||||
def get_suggestions(
|
|
||||||
diff: GitDiff, retriever: VectorStoreRetriever, chat_client: ChatClient
|
|
||||||
) -> ChatClient:
|
|
||||||
new_client = chat_with_client(chat_client, craft_message(diff), retriever)
|
|
||||||
log_info(str(new_client.get_last_response_or_none().content))
|
|
||||||
return new_client
|
|
||||||
|
|
||||||
|
|
||||||
def craft_message(diff) -> str:
|
|
||||||
return (
|
|
||||||
"Review the following code changes and make up to three suggestions on "
|
|
||||||
"how to improve it. If the code is sufficiently simple or accurate then say "
|
|
||||||
"no suggestions can be found. Important issues you should consider are consistent "
|
|
||||||
"style, introduction of syntax errors, and potentially breaking changes in "
|
|
||||||
"interfaces/APIs that aren't properly handled.\n\n"
|
|
||||||
f"The original code:\n```\n{diff.old_content}\n```\n"
|
|
||||||
f"The new code:\n```\n{diff.new_content}```"
|
|
||||||
)
|
|
|
@ -6,25 +6,21 @@ from langchain_core.documents.base import Document
|
||||||
from langchain_core.vectorstores import VectorStoreRetriever
|
from langchain_core.vectorstores import VectorStoreRetriever
|
||||||
from langchain_ollama.embeddings import OllamaEmbeddings
|
from langchain_ollama.embeddings import OllamaEmbeddings
|
||||||
|
|
||||||
from .configs import OllamaConfig
|
|
||||||
|
|
||||||
|
|
||||||
def documents_from_path_list(file_paths: list[Path | str]) -> list[Document]:
|
def documents_from_path_list(file_paths: list[Path | str]) -> list[Document]:
|
||||||
return [doc for file_path in file_paths for doc in TextLoader(file_path).load()]
|
return [doc for file_path in file_paths for doc in TextLoader(file_path).load()]
|
||||||
|
|
||||||
|
|
||||||
def create_retriever(
|
def create_retriever(
|
||||||
file_paths: list[Path | str], config: OllamaConfig
|
file_paths: list[Path | str], embedding_model: str
|
||||||
) -> VectorStoreRetriever:
|
) -> VectorStoreRetriever:
|
||||||
embeddings = OllamaEmbeddings(
|
embeddings = OllamaEmbeddings(model=embedding_model)
|
||||||
model=config.embedding_model, base_url=config.base_url
|
|
||||||
)
|
|
||||||
vectorstore = FAISS.from_documents(documents_from_path_list(file_paths), embeddings)
|
vectorstore = FAISS.from_documents(documents_from_path_list(file_paths), embeddings)
|
||||||
return vectorstore.as_retriever()
|
return vectorstore.as_retriever()
|
||||||
|
|
||||||
|
|
||||||
def get_context_from_store(message: str, retriever: VectorStoreRetriever):
|
def get_context_from_store(message: str, retriever: VectorStoreRetriever):
|
||||||
docs = retriever.invoke(message)
|
docs = retriever.get_relevant_documents(message)
|
||||||
return "\n\n".join([doc.page_content for doc in docs])
|
return "\n\n".join([doc.page_content for doc in docs])
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -6,5 +6,5 @@ from reviewllama.configs import create_ollama_config
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
def ollama_config():
|
def ollama_config():
|
||||||
return create_ollama_config(
|
return create_ollama_config(
|
||||||
"gemma3:4b", "localhost:11434", "You are a helpful assistant.", 0.0, "nomic-embed-text"
|
"gemma3:4b", "localhost:11434", "You are a helpful assistant.", 0.0
|
||||||
)
|
)
|
||||||
|
|
|
@ -1,13 +1,16 @@
|
||||||
import os
|
import os
|
||||||
import tempfile
|
import tempfile
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from unittest.mock import Mock, patch
|
from unittest.mock import MagicMock, Mock, patch
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
from langchain_core.documents.base import Document
|
from langchain_core.documents.base import Document
|
||||||
from langchain_core.vectorstores import VectorStoreRetriever
|
from langchain_core.vectorstores import VectorStoreRetriever
|
||||||
|
|
||||||
from reviewllama.vector_store import create_retriever, documents_from_path_list
|
from reviewllama.utilities import is_ollama_available
|
||||||
|
from reviewllama.vector_store import (create_retriever,
|
||||||
|
documents_from_path_list,
|
||||||
|
get_context_from_store)
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
|
@ -49,9 +52,7 @@ def test_load_documents(temp_files):
|
||||||
@patch("reviewllama.vector_store.OllamaEmbeddings")
|
@patch("reviewllama.vector_store.OllamaEmbeddings")
|
||||||
@patch("reviewllama.vector_store.FAISS")
|
@patch("reviewllama.vector_store.FAISS")
|
||||||
@patch("reviewllama.vector_store.documents_from_path_list")
|
@patch("reviewllama.vector_store.documents_from_path_list")
|
||||||
def test_create_retriever(
|
def test_create_retriever(mock_docs_from_list, mock_faiss, mock_embeddings):
|
||||||
mock_docs_from_list, mock_faiss, mock_embeddings, ollama_config
|
|
||||||
):
|
|
||||||
"""Test successful retriever creation"""
|
"""Test successful retriever creation"""
|
||||||
# Setup mocks
|
# Setup mocks
|
||||||
mock_docs = [Document(page_content="test", metadata={"source": "test.txt"})]
|
mock_docs = [Document(page_content="test", metadata={"source": "test.txt"})]
|
||||||
|
@ -66,15 +67,83 @@ def test_create_retriever(
|
||||||
mock_faiss.from_documents.return_value = mock_vectorstore
|
mock_faiss.from_documents.return_value = mock_vectorstore
|
||||||
|
|
||||||
# Test
|
# Test
|
||||||
result = create_retriever(["test.txt"], ollama_config)
|
result = create_retriever(["test.txt"], "test-embedding-model")
|
||||||
|
|
||||||
# Assertions
|
# Assertions
|
||||||
assert result == mock_retriever
|
assert result == mock_retriever
|
||||||
mock_embeddings.assert_called_once_with(
|
mock_embeddings.assert_called_once_with(model="test-embedding-model")
|
||||||
model=ollama_config.embedding_model, base_url=ollama_config.base_url
|
|
||||||
)
|
|
||||||
mock_docs_from_list.assert_called_once_with(["test.txt"])
|
mock_docs_from_list.assert_called_once_with(["test.txt"])
|
||||||
mock_faiss.from_documents.assert_called_once_with(
|
mock_faiss.from_documents.assert_called_once_with(
|
||||||
mock_docs, mock_embedding_instance
|
mock_docs, mock_embedding_instance
|
||||||
)
|
)
|
||||||
mock_vectorstore.as_retriever.assert_called_once()
|
mock_vectorstore.as_retriever.assert_called_once()
|
||||||
|
|
||||||
|
def test_get_context_from_store_success():
|
||||||
|
"""Test successful context retrieval"""
|
||||||
|
mock_retriever = Mock(spec=VectorStoreRetriever)
|
||||||
|
mock_docs = [
|
||||||
|
Document(page_content="First relevant document", metadata={}),
|
||||||
|
Document(page_content="Second relevant document", metadata={}),
|
||||||
|
Document(page_content="Third relevant document", metadata={}),
|
||||||
|
]
|
||||||
|
mock_retriever.get_relevant_documents.return_value = mock_docs
|
||||||
|
|
||||||
|
result = get_context_from_store("test query", mock_retriever)
|
||||||
|
|
||||||
|
expected = "First relevant document\n\nSecond relevant document\n\nThird relevant document"
|
||||||
|
assert result == expected
|
||||||
|
mock_retriever.get_relevant_documents.assert_called_once_with("test query")
|
||||||
|
|
||||||
|
@patch('reviewllama.vector_store.OllamaEmbeddings')
|
||||||
|
@patch('reviewllama.vector_store.FAISS')
|
||||||
|
def test_full_pipeline_mock(mock_faiss, mock_embeddings, temp_files):
|
||||||
|
"""Test the full pipeline with mocked external dependencies"""
|
||||||
|
# Setup mocks
|
||||||
|
mock_embedding_instance = Mock()
|
||||||
|
mock_embeddings.return_value = mock_embedding_instance
|
||||||
|
|
||||||
|
mock_vectorstore = Mock()
|
||||||
|
mock_retriever = Mock(spec=VectorStoreRetriever)
|
||||||
|
mock_retriever.get_relevant_documents.return_value = [
|
||||||
|
Document(page_content="Relevant test content", metadata={})
|
||||||
|
]
|
||||||
|
mock_vectorstore.as_retriever.return_value = mock_retriever
|
||||||
|
mock_faiss.from_documents.return_value = mock_vectorstore
|
||||||
|
|
||||||
|
# Test full pipeline
|
||||||
|
retriever = create_retriever(temp_files[:2], "test-model")
|
||||||
|
context = get_context_from_store("test query", retriever)
|
||||||
|
|
||||||
|
assert context == "Relevant test content"
|
||||||
|
mock_embeddings.assert_called_once_with(model="test-model")
|
||||||
|
mock_retriever.get_relevant_documents.assert_called_once_with("test query")
|
||||||
|
|
||||||
|
def test_documents_from_list_content_verification(temp_files):
|
||||||
|
"""Test that documents contain expected content"""
|
||||||
|
docs = documents_from_path_list(temp_files)
|
||||||
|
|
||||||
|
contents = [doc.page_content for doc in docs]
|
||||||
|
|
||||||
|
# Check that we have the expected content
|
||||||
|
assert any("Python code examples" in content for content in contents)
|
||||||
|
assert any("JavaScript functions" in content for content in contents)
|
||||||
|
assert any("testing best practices" in content for content in contents)
|
||||||
|
assert any("deployment info" in content for content in contents)
|
||||||
|
|
||||||
|
# Optional: Integration test that requires actual Ollama server
|
||||||
|
def test_create_retriever_with_real_ollama(temp_files, ollama_config):
|
||||||
|
"""Integration test with real Ollama (requires server running)"""
|
||||||
|
if not is_ollama_available(ollama_config):
|
||||||
|
pytest.skip("Local Ollama server is not available")
|
||||||
|
try:
|
||||||
|
# This test would use a real embedding model
|
||||||
|
# Skip by default unless explicitly testing integration
|
||||||
|
retriever = create_retriever(temp_files[:2], "nomic-embed-text")
|
||||||
|
assert retriever is not None
|
||||||
|
|
||||||
|
# Test actual retrieval
|
||||||
|
context = get_context_from_store("Python code", retriever)
|
||||||
|
assert isinstance(context, str)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
pytest.skip(f"Ollama server not available or model not found: {e}")
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue